MathWorks™ Automotive Advisory Board

Control Algorithm Modeling Guidelines

Using MATLAB®, Simulink®, and Stateflow’
(Version 2.0)

MATLAB
SIMULINK"

_‘\The MathWorks™

Accelerating the pace of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MathWorks™ Automotive Advisory Board Control Algorithm Modeling Guidelines Using
MATLAB®, Simulink®, and Stateflow® (Version 2.0)

© COPYRIGHT 2007-2009 by MathWorks™ Automotive Advisory Board

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2009 Online only Release 2009a

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction

Presentation of Guidelines Hosted by The

MathWorks ittt 1-2
Motivationttt 1-3
Guideline Template 1-4

Guideline ID 1-5

Guideline Title i, 1-5

Priority 1-6

770 o1t 1-7

MATLAB Versionsuueeeeennnnnnnnnnnn. 1-8

Prerequisites 1-8

Description ... 1-8

Rationale i 1-9

Last Change 1-10

Model Advisor Check, 1-10
Document Usage iiiiunnnn. 1-11

2

General Guidelines 2-2

Model Content, 2-7

iii

iv

Contents

Model Architecture

3

Simulink and Stateflow Partitioning 3-2
Subsystem Hierarchies 3-14
J-MAAB Model Architecture Decomposition 3-21

Model Configuration Options

4

5

Model Configuration Options 4-2

Simulink
Diagram Appearancecciiiiinnnn. 5-2
Signals 5-27
Block Usageciiiiiiii i, 5-35
Block Parameterscciiiiiiiinna... 5-55
Simulink Patterns 5-62

Stateflow

6

Chart Appearancec..iiiiiinnnnnnnn. 6-2
Stateflow Data and Operations 6-20
Events 6-39
Statechart Patterns 6-43
Flowchart Patterns 6-49

Recommendations for Automation Tools

Al

Guideline Writing

Flowchart Reference

Background Information on Basic Blocks and
Signals

D

BasicBlocks e D-2

Signals and Signal Labels D-3

MAAB Glossary

vi Contents

Introduction

® “Presentation of Guidelines Hosted by The MathWorks” on page 1-2
e “Motivation” on page 1-3
¢ “Guideline Template” on page 1-4

¢ “Document Usage” on page 1-11

1 Introduction

Presentation of Guidelines Hosted by The MathWorks

This presentation of the MathWorks™ Automotive Advisory Board (MAAB)
guidelines, Version 2.0, is based on the document, of the same title, authored
by the MAAB working group. In addition to the information included in the
original document, this presentation includes references to corresponding
Model Advisor MAAB checks that you can apply if you are licensed to use
Simulink® and Simulink® Verification and Validation™ software.

1-2

Motivation

Motivation

The MathWorks Automotive Advisory Board (MAAB) guidelines are
important for project success and teamwork—Dboth in-house and when
cooperating with partners or subcontractors. Observing the guidelines is a
key prerequisite to achieving:

® Problem-free system integration

o Well-defined interfaces

¢ Uniform appearance of models, code, and documentation

® Reusable and readable models

® Problem-free exchange of models

* A simple, effective process

¢ Professional documentation

e Understandable presentations

® Fast software changes

e Cooperation with subcontractors

® Successful transitions of research or predevelopment projects to product
development

1-3

1 Introduction

Guideline Template

In this section...

“Guideline ID” on page 1-5
“Guideline Title” on page 1-5
“Priority” on page 1-6

“Scope” on page 1-7

“MATLAB Versions” on page 1-8
“Prerequisites” on page 1-8
“Description” on page 1-8
“Rationale” on page 1-9

“Last Change” on page 1-10

“Model Advisor Check” on page 1-10

Guideline descriptions are documented, using the following template.
Companies that want to create additional guidelines are encouraged to use
the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)
Priority Mandatory, Strongly recommended, or Recommended
Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for

optional local company usage)

MATLAB® One of the following:
Versions All

RX, RY, RZ

RX and earlier

RX and later

RX through RY

Prerequisites Links to guidelines, which are prerequisites to this
guideline (ID: Title)

Guideline Template

Description Description of the guideline (text, images)

Rationale Motivation for the guideline

Last Version number of last change

Change

Model Title of and link to the corresponding Model Advisor check,
Advisor if a check exists

Check

Note The elements of this template are the minimum required items for
understanding and exchanging guidelines. You can add project or vendor
fields to this template as long as their meaning does not overlap with existing
fields. Such additions are encouraged if they help to integrate other guideline
templates and lead to a wider acceptance of the core template.

Guideline ID

e The guideline ID is built out of two lowercase letters (representing the
origin of the rule) and a four-digit number, separated by an underscore.

® Once a new guideline has an ID, the ID does not change.
e The ID is used for references to guidelines.

¢ The two letter prefixes na, jp, jc and eu are reserved for future MAAB
committee rules.

® Legacy prefixes, db, jm, hd, and ar, are reserved. The MAAB committee
will not use these prefixes for new rules.

® No new rules are to be written with these legacy prefixes.

Guideline Title

¢ The title should be a short, but unique description of the guidelines area of
application (for example, length of names)

® The title is used for the Prerequisites field and for custom checker tools.

¢ The title text should appear with a hyperlink that links to the guideline.

1-5

Introduction

1-6

Note The title should not be a redundant short description of the guidelines
content, because while the latter may change over time, the title should

remain stable.

Priority

Each guideline must be rated with one of the following priorities:

e Mandatory

® Strongly recommended

® Recommended

The priority describes the importance of the guideline and determines the

consequences of violations.

Mandatory

Strongly
Recommended

Recommended

Definition

Guidelines that all
companies agree to that
are absolutely essential

Guidelines that all
companies conform to
100%

Guidelines that are
agreed upon to be

a good practice, but
legacy models preclude
a company from
conforming to the
guideline 100%

Models should conform
to these guidelines to
the greatest extent
possible; however,
100% compliance is not
required

Guidelines that are
recommended to
improve the appearance
of the model diagram,
but are not critical to
running the model

Guidelines where
conformance is
preferred, but not
required

Consequences: If the guideline is violated,

Guideline Template

Mandatory Strongly

Recommended

Recommended

Essential items are
missing

The quality

The model might not CleERies

work properly

and appearance

An adverse effect

on maintainability,
portability, and
reusability might occur

The appearance does
not conform with other
projects

Waiver Policy: If the guideline is intentionally ignored,

The reasons must be
documented

Scope

The scope of a guideline may be set to one of the following:

Scope

Description

MAAB (MathWorks Automotive
Advisory Board)

A group of automotive manufacturers
and suppliers that work closely
together with The MathWorks™.
MAAB includes the subgroups
J-MAAB and NA-MAAB.

J-MAAB (Japan MAAB)

A subgroup of MAAB that includes
automotive manufacturers and
suppliers in Japan and works closely
with The MathWorks. Rules with
J-MAAB scope are local to Japan.

NA-MAAB (North American MAAB)

A subgroup of MAAB that includes
automotive manufacturers and
suppliers in the United States and
Europe and works closely with The
MathWorks. Rules with NA-MAAB
scope are local to the United States
and Europe.

1-7

Introduction

1-8

MATLAB Versions

The guidelines support all versions of the MATLAB and Simulink products. If
the rule applies to specific versions, the versions are identified in the MATLAB
versions field. The version information is in one of the following formats.

Format Definition

All All versions of MATLAB

RX, RY, or RZ A specific version of MATLAB

RX and earlier Versions of MATLAB until version RX

RX and later Versions of MATLAB from version RX to the current
version

RX through RY Versions of MATLAB between RX and RY

Prerequisites

¢ The Prerequisite field is for links to other guidelines that are prerequisites
for this guideline (logical conjunction).

e Use the guideline ID (for consistency) and the title (for readability) for
the links.

¢ The Prerequisites field should not contain any other text.

Description

¢ This field contains a detailed description of the guideline.

¢ If needed, add images and tables.

Note If formal notation (math, regular expression, syntax diagrams,
and exact numbers/limits) is available, use it to unambiguously describe
a guideline and specify an automated check. However, a human,
understandable, informal description must always be provided for daily
reference.

Guideline Template

Rationale

This field lists the reasons that apply for a given guideline. You can
recommend guidelines for one or more of the following reasons:

Rationale

Description

Readability

Easily understood algorithms
®* Readable models

¢ Uniform appearance of models, code, and
documentation

e (Clean interfaces

e Professional documentation

Workflow

Effective development process and workflow
¢ Ease of maintenance

¢ Rapid model changes
® Reusable components
¢ Problem-free exchange of models

e Model portability

Simulation

Efficient simulation and analysis
¢ Simulation speed

¢ Simulation memory

e Model instrumentation

Verification and
validation

Ability to verify and validate a model and generated
code with
® Requirements traceability

e Testing
® Problem-free system integration

® (Clean interfaces

Code generation

Generation of code that is efficient and effective for
embedded systems
¢ Fast software changes

® Robustness of generated code

1-9

Introduction

1-10

Last Change

The Last change field contains the document version number.

Model Advisor Check

The Simulink Verification and Validation product includes MAAB checks,
which correspond to a subset of MAAB guidelines, that you can select and run
with the Simulink Model Advisor. The Model Advisor check field contains
the title of and a link to the corresponding Model Advisor MAAB check, if a
check exists.

For a list of available Model Advisor checks for the MAAB guidelines, see
“MathWorks Automotive Advisory Board Checks” in the Simulink Verification
and Validation documentation. For information on using the Model Advisor,
see “Consulting the Model Advisor” in the Simulink documentation.

Document Usage

Document Usage
¢ Chapter 2, “Naming Conventions” and Chapter 3, “Model Architecture”
provide basic guidelines that apply to all types of models.

® Chapter 5, “Simulink” and Chapter 6, “Stateflow” deal with specific rules
for those environments.

® Some guidelines are dependent on other guidelines and are explicitly listed
throughout the document.

For information on automated checking of the guidelines, see Appendix A,
“Recommendations for Automation Tools”.

1-11

1 Introduction

1-12

Naming Conventions

¢ “General Guidelines” on page 2-2

® “Model Content” on page 2-7

2 Naming Conventions

General Guidelines

ar_0001: Filenames

ar_0002: Directory names

2-2

ar 0001: Filenames

ID: Title ar_0001: Filenames
Prioriry Mandatory

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description A file name conforms to the following constraints:

Form

filename = name.extension

® pame: no leading digits, no blanks

® extension: no blanks

Uniqueness

All file names within the parent project directory

Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

extension:
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

Underscores

name:

2-3

ar 0001: Filenames

Rationale

Last
Changed

Model
Advisor
Check

¢ (Can use underscores to separate parts

Cannot have more than one consecutive underscore

e Cannot start with an underscore

Cannot end with an underscore

extension:

Should not use underscores

® Readability
* Workflow

V1.0

“Check for invalid file names”

ar_0002: Directory names

Priorii'y Mandatory
Scope MAAB
MATLAB All
Versions

Prerequisites None

Description A directory name conforms to the following constraints:

Form

directory name = name

name: no leading digits, no blanks

Uniqueness

All directory names within the parent project directory
Allowed characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores

name:

e (Can use underscores to separate parts

Cannot have more than one consecutive underscore

Cannot start with an underscore

Cannot end with an underscore

Rationale e Readability
Workflow

2-5

ar_0002: Directory names

Last V1.0
Changed

Model “Check for invalid model directory names”
Advisor

Check

2-6

ar_0002: Directory names

Model Content

jc_0201: Usable characters for
Subsystem names

jc_0211: Usable characters for
Inport blocks and Outport blocks

jc_0221: Usable characters for
signal line names

jc_0231: Usable characters for
block names

na_0014: Use of local language in
Simulink and Stateflow

2-7

jc_0201: Usable characters for Subsystem names

ID: Title jc_0201: Usable characters for Subsystem
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The names of all Subsystem blocks should conform to the following
constraints:

Form

name:

e Should not start with a number

¢ Should not include blank spaces

Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores

name:

¢ (Can use underscores to separate parts
¢ Cannot have more than one consecutive underscore
e Cannot start with an underscore

e Cannot end with an underscore

2-8

jc_0201: Usable characters for Subsystem names

Rationale ¢ Readability
o Workflow

® Code generation

Last V2.0

Changed

Model “Check whether subsystem block names include invalid characters”
Advisor

Check

2-9

jc_0211: Usable characters for Inport blocks and
Outport blocks

ID: Title jc_0211: Usable characters for Inport blocks and Outport blocks
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The names of all Inport blocks and Output blocks should conform to
the following constraints:

Form

name:

e Should not start with a number

¢ Should not include blank spaces

Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores

name:

¢ (Can use underscores to separate parts
¢ Cannot have more than one consecutive underscore
e Cannot start with an underscore

e Cannot end with an underscore

2-10

jc_0211: Usable characters for Inport blocks and
Outport blocks

Rationale ¢ Readability
o Workflow

® Code generation

Last V2.0

Changed

Model “Check whether Inport and Outport block names include invalid
Advisor characters”

Check

2-11

jc_0221: Usable characters for signal line names

ID: Title jc_0221: Usable characters for signal line names
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description Identifies named signals constraints

Form

name:

e Should not start with a number
e Should not include blank spaces

e Should not include any control characters

Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Underscores

name:

¢ (Can use underscores to separate parts

Cannot have more than one consecutive underscore

e Cannot start with an underscore

Cannot end with an underscore

2-12

jc_0221: Usable characters for signal line names

Rationale

Last
Changed

Model
Advisor
Check

® Readability
e Workflow

® Code generation

V2.0

“Check whether signal line names include invalid characters”

2-13

jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites jc_0201: Usable characters for Subsystem names

Description The names of all blocks should conform to the following constraints:

Form

name:

Should not start with a number

Should not include blank spaces

Should not use double byte characters
e (Carriage returns are allowed
Allowed Characters

name:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Note This rule does not apply to Subsystem blocks.

Rationale e Readability
e Workflow

® Code generation

2-14

jc_0231: Usable characters for block names

Last
Changed

Model
Advisor
Check

V2.0

“Check whether block names include invalid characters”

2-15

na_0014: Use of local language in Simulink and

Stateflow

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

2-16

na_0014: Use of local language in Simulink and Stateflow
Strongly recommended
J-MAAB

All

None

Use the local language in descriptive fields only. Descriptive fields
are text entry points that do not affect code generation or simulation.
Examples of descriptive fields include the Description field in the
Block Properties dialog box.

Simulink Examples

¢ The Description field in the Block Properties dialog box

J} Black Propertie

Gieneral | Block &nnotation || Callbacks

|lzage

Description: Text zaved with the block in the model file.

Priority: Specifies the block's order of execution relative to other blocks in the
zame model.

Tae: Text that appearz in the block label that Simulink eenerates.

Dezcription:

Lozal laneuage can be uged. ;I

e Text annotation entered directly in the model

na_0014: Use of local language in Simulink and
Stateflow

O @& @ =B &= =2

I escription: Local language can be used.

Outi o Ini
outz ——lIn2

Stateflow® Examples

® The Description field of chart and state Properties

2-17

na_0014: Use of local language in Simulink and
Stateflow

MHame: State
Parent: ichart) SF sample/Chart2
Breakpoints: [~ State Durine [~ State Entry [State Exit

Dezcription:

Local laneuage can be used.

Document Link

Ik Cancel Help Al

e Annotation description added using Add Note

2-18

na_0014: Use of local language in Simulink and

Stateflow

Rationale

Last
Changed

Model
Advisor
Check

Lecal fanguage can be used

[condition]

Add Mote

i)
)y
Faste

Back |

|action}

Note It is possible that Simulink cannot open a model that includes
local language on different character encoding systems. Therefore, pay
attention when using local characters for exchanging models between
countries.

® Readability
* Workflow

V2.0

“Check whether signal line names include invalid characters”

2-19

na_0014: Use of local language in Simulink and
Stateflow

2-20

Model Architecture

¢ “Simulink and Stateflow Partitioning” on page 3-2
® “Subsystem Hierarchies” on page 3-14

e “J-MAAB Model Architecture Decomposition” on page 3-21

3 Model Architecture

3-2

Simulink and Stateflow Partitioning

na_0006: Guidelines for mixed use
of Simulink and Stateflow

na_0007: Guidelines for use of Flow
Charts, Truth Tables and State
Machines

na_0006: Guidelines for mixed use of Simulink and

Stateflow

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0006: Guidelines for mixed use of Simulink and Stateflow
Strongly recommended
MAAB

All

None

The choice of whether to use Simulink or Stateflow to model a given
portion of the control algorithm functionality should be driven by the
nature of the behavior being modeled.

e [f the function primarily involves complicated logical operations, use
Stateflow features.

Use Stateflow features to implement modal logic, where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.

e [f the function primarily involves numerical operations, use Simulink
features.

Specifics

e If the primary nature of the function is logical, but some simple
numerical calculations are done to support the logic, implement the
simple numerical functions using the Stateflow action language.

na_0006: Guidelines for mixed use of Simulink and

Stateflow

3-4

Bty O

i
{ FroptAxdeActivalionC ountar

b
i

(r:m‘

[CradtvaR G ond) (AL vt ond]

:-'—"''-'_'-'_‘-

Activated
eniny. - ActivationCl = ActivationCt+ 3,

Embedded simple
math operation

¢ [f the primary nature of the function is numeric, but some simple
logical operations are done to support the arithmetic, implement the

simple logical functions with Simulink features.

Wepart 2 Subs ystemSabipst e

s Ede Ve Seaaon Fomst Tods beb
D SRS £ R b0 30 b oo [3

O e

Embedded simple
logic operations

na_0006: Guidelines for mixed use of Simulink and
Stateflow

e [fthe primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, use a
Simulink subsystem to implement the numerical calculations. A

Stateflow chart should invoke the execution of the subsystem, using
a function call.

2 St alefiow {sdchart) Caltil FromSF, Tram gl fi0ha

e [t tew Sestion Iook 403 Heb . : -
FHE L BmE[es T OFEr 0 owE

VETHI AT =
T =i

na_0006: Guidelines for mixed use of Simulink and
Stateflow

i_T:I allStFreenSF_Traem_ ol ™

File (i Ve Sradsion Fomst Todh Hel
DFREG 2B P Dy sfoe e D HMES:

Emimes
I
' ™ :
|
e (D R
e
RS) Toi e el
uF ATH k™
% et STEL Qs
e poones (0 e |
Wy TRty L Sebags
v .:‘M ! 'J“MNLEPQ:‘;'@
Chad
Ry I f Foonttstapbapcrats &

*

J‘ [ThCacCond [Resstond)

(Co ™
during Tol nt=ul.

Tol_in2 = U2

fR T e

3-6

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Fils [df Veer Seaistion Formst Tock belp
D& @i i s iod [Nees =] S 5 & Rl
BD—mames
ol v"";';',';""""@ "*
: o Snaretiiory (1
T -:hl_ml‘ *
o - - W
R i gy T
I My TBILMA PO Eebisd
En_Culfacheadip mqﬂli:&ig °
o i |
g E i FranaRinebucntn i

e Use Stateflow to implement modal logic, where the control function
to be performed at the current time depends on a combination of past
and present logical conditions. (If there 1s a need to store the result of
a logical condition test in a Simulink model, for example, by storing a
flag, this is an indicator of the presence of modal logic, and the test is
better modeled as a Stateflow chart.)

na_0006: Guidelines for mixed use of Simulink and

Stateflow

3-8

|} e e 6 S0, Ervgplerraenit alion

Ele [t e Suson Fomet Tk b
DiFM& @B -3 Dy off [A Hmbid&E: RERS

OB J

|unﬂ:qrhg | | HLRAzFlag |

&thMMmﬁm{m
DieE@ f Tl o

L 2 r‘@
bkng TENIS
o] o
FER f { Frovdebm
Incorrect

na_0006: Guidelines for mixed use of Simulink and
Stateflow

L | maD0DEpart 5 /SF binphment abion *
e [t Yew Smidion Fomst ook ke
DEES Best) s few DEMDS REE

LiaTelThrshorad | RivBRF e o i s v o o .4

@

{E}Wmnmmw BLFngf T

<L hake

)

HLErg Punatard sl
Suteprdam

i : i Fropdiinpliscrets 4

§ Potkre o s

| g

£k £

i

;e A =
L ..

¢ [T 4™
Correct

¢ Use Simulink to implement numerical expressions containing
continuously-valued states, such as: difference equations, integrals,

derivatives, and filters.

3-9

na_0006: Guidelines for mixed use of Simulink and
Stateflow

R e s 13

eniate Thipa Tranimon

Incorrect

I T O T s B L s T e

et L Mgk af Lemparss Beset Enabilod * i S |
fe [Vew Deldion Fomat Took Help

Diwdd >8Py wfion [Newa = 505 2

o s

]

Phoiateide!

Sionchy 00 1 i ol Ae

Correct

e Use Simulink to implement numerical expressions containing
continuously-valued states, such as: difference equations, integrals,
derivatives, and filters.

3-10

na_0006: Guidelines for mixed use of Simulink and

Stateflow

Rationale

Last
Changed

Model
Advisor
Check

® Readability
Workflow

Simulation

Verification and Validation

® Code Generation

V2.0

Not applicable

3-11

na_0007: Guidelines for use of Flow Charts, Truth Tables
and State Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines

Priority Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites na_0006: Guidelines for mixed use of Simulink and
Stateflow

Description Within Stateflow, the choice of whether to use a flow chart or a state
chart to model a given portion of the control algorithm functionality
should be driven by the nature of the behavior being modeled.

¢ [fthe primary nature of the function segment is to calculate modes of
operation or discrete-valued states, use state charts. Some examples
are:

= Diagnostic models with pass, fail, abort, and conflict states

= Model that calculates different modes of operation for a control
algorithm

¢ [fthe primary nature of the function segment involves if-then-else
statements, use flowcharts or truth tables.
Specifics

If the primary nature of a function segment is to calculate modes or
states, but if-then-else statements are required, add a flow chart to a
state within the state chart. (See “Flowchart Patterns” on page 6-49.)

Rationale e Readability
e Workflow

3-12

na 0007: Guidelines for use of Flow Charts, Truth
Tables and State Machines

® Simulation
e Verification and Validation

® Code Generation

Last V2.0
Changed

Model Not applicable
Advisor

Check

3-13

na_0007: Guidelines for use of Flow Charts, Truth Tables
and State Machines

Subsystem Hierarchies

db_0040: Model hierarchy

db_0143: Similar block types on
the model levels

db_0144: Use of Subsystems

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

3-14

db_0143: Similar block types on the model levels

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0143: Similar block types on the model levels

Strongly recommended
NA-MAAB

All

None

You must design every level of a model with building blocks of the same

type; only subsystems or only basic blocks.

Blocks that You Can Place at any Model Level

Block

Example

Bus Creator

i

Bus Selector

i

Data Store Memory

Demux

Enable (not on highest
model level)

3-15

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block Example
From A
Goto »® 1A
Ground E:
i
Inport {::‘}::
3
Merge J Margs p
bR
Multiport Switch o~
H—t
Mux :I»
Outport 1)

3-16

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block

Example
Rate Transition A dgﬁ b
Selector b :__‘ :
._,_,—o-
Switch gi‘x,

Switch Case

Terminator

=]

Trigger (not on highest
model level)

Type Conversion

Convert

Unit Delay

Note You cannot place Trigger or Enable blocks at the root level of a

model.

3-17

db_0143: Similar block types on the model levels

Rationale ¢ Readability
o Workflow

e Verification and Validation

Last V2.0

Changed

Model “Check for systems that mix primitive blocks and subsystems”
Advisor

Check

3-18

db_0144: Use of Subsystems

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

db_0144: Use of Subsystems
Strongly recommended
MAAB

All

None

Group blocks in a Simulink diagram together into subsystems based
on functional decomposition of the algorithm, or portion thereof,
represented in the diagram.

Avoid grouping blocks into subsystems primarily for saving space

in the diagram. Each subsystem in the diagram should represent a
unit of functionality required to accomplish the purpose of the model
or submodel.

Readability
Workflow

Verification and Validation

Code Generation

V2.0

Not applicable

3-19

db_0040: Model hierarchy

ID: Title db_0040: Model hierarchy
Priorii'y Strongly recommended
Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The model hierarchy should correspond to the functional structure of
the control system.

Rationale * Readability
e Workflow

e Verification and Validation

® Code Generation

Last V2.0
Changed

Model Not applicable
Advisor

Check

3-20

db_0040: Model hierarchy
|

J-MAAB Model Architecture Decomposition

jc_0301: Controller model
jc_0311: Top layer/root level
jc_0321: Trigger layer
jc_0331: Structure layer
jc_0341: Data flow layer

3-21

jc_0301: Controller model

ID: Title jc_0301: Controller model
Priority Mandatory

Scope J-MAAB

MATLAB All

Versions

Prerequisites None

Description Control models are organized using the following hierarchical structure.
Details on each layer are provided in corresponding rules.
* Top layer (root level), jc_0311: Top layer/root level
® Trigger layer, jc_0321: Trigger layer
® Structure layer. jc_0331: Structure layer
® Data flow layer, jc_0341: Data flow layer
Use of the Trigger level is optional. In the following figure, Type A

shows the use of a trigger level while Type B shows a model without
a trigger level.

3-22

jc_0301: Controller model

Rationale

Last
Changed

Model
Advisor
Check

" Dezrribe a proceszing fming,

Stroctire Layer
: EWENT
EVENT +
ome ; —
—+ = |z .t

Oaa Aow
Laner

20

b

Controller Model
Workflow

V2.0

Not applicable

3-23

jc_0311: Top layer/root level

ID: Title jc_0311: Top layer/root level
Priority Mandatory

Scope J-MAAB

MATLAB All

Versions

Prerequisites None

Description Items to describe in a top layer are as follows:

® QOverview: Explanation of model feature overview
¢ Input: Input variables

® Qutput: Output variables

_____ - _-——
£ i
[inputi | |

: LITTETN 4 | |'|II|.|'|.It1 Dmpm I :lu tputt] 1
| 1

! s Input2 ! I

: I Output? —f—h—.mmnz 1

| |||Eum L —ainputs X 1
1 1

I Ly

| [Inputd | —sfinputs QUIPULE—— —mOutputz| 1

1

------ Controlleri = -———
'\\\ A\\

nput

Top Layer Example

Rationale Workflow
Last V2.0
Changed

3-24

jc_0311: Top layer/root level
|

Model Not applicable

Advisor
Check

3-25

jc_0321: Trigger layer

3-26

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

jc_0321: Trigger layer
Mandatory
J-MAAB

All

None

A trigger layer indicates the processing timing by using Triggered
Subsystem or Function-Call Subsystem blocks.

® The blocks should set Priority, if needed.

¢ The priority value must be displayed as a block annotation. You
should be able to understand the priority-based order without having
to open the block.

T 5 ri)j T
Eventd EventBE Taskdmsy Task2ms
£ F

& £

TimingA_function TimingB_function Task4ms_function TaskZms_function
Frigrity =1 Priority = 2 Priority = 3 Prlority = 4

Trigger Layer Example

® Readability
e Workflow

® Code Generation

jc_0321: Trigger layer

Last V2.0
Changed

Model Not applicable
Advisor

Check

3-27

jc_0331: Structure layer

ID: Title jc_0331: Structure layer
Priorii'y Mandatory

Scope J-MAAB

MATLAB All

Versions

Prerequisites None

Description ® Describe a structure layer like the following structure layer example.

¢ In the case of Type B, specify sample time at an Inport block or a
Subsystem block to define task time of the subsystem.

¢ In the case of Type B, use a block annotation at an Inport block or
a Subsystem block and display sample time to clarify task time of
the subsystem.

¢ A subsystem of a structure layer should be an atomic subsystem.

B

TaskZms
Local
Component_B ol ocalt
Local2 Local2 Outputz|—=(1}
3 —w{Input3 OQutput?
Input3 Local3 wLocald
Component_F Component_H

Structure Layer Example (Type A: No Description of Processing Timing)

3-28

jc_0331: Structure layer

Rationale

Last
Changed

Model
Advisor
Check

1 3
Input
<tzample=0.002>

Inputd
<tsample=0.004=

EventA

efinputa f

Component_|
=tsample=-1>

Localid

»iLocalld

Component_K
<tsample=-1>

Locald-

Locald

Localld

¥

¥

Localid

Inputd

Locali2

Locali2

Component_J
<tsample=d 004>

¥

Component_L
<teample=0.002>

Structure Layer Example (Type B: Description of Processing Timing)

e Workflow

V2.0

Not applicable

Output3|—s{ 1)

Output3

3-29

jc_0341: Data flow layer

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Adyvisor
Check

3-30

jc_0341: Data flow layer
Mandatory
J-MAAB

All

None

Describe a data flow layer as in the following example. In the case of
Type A, use a block annotation at an Inport block and display its sample
time to clarify execution timing of the signal.

Unnecessary display in Typeh.
&8 / : .
= Lagald _ |

{tsamplem0002,

2
Outputz

e
L 2

Sublnput SubOutput

<tzample=0.002= SubComponent

Local3
<tsample=0.002>

Data Flow Layer Example
Workflow

V2.0

Not applicable

Model Configuration
Options

4 Model Configuration Options

4-2

Model Configuration Options

jc_0011: Optimization parameters
for Boolean data types

jc_0021: Model diagnostic settings

jc_0011:

Optimization parameters for Boolean data
types

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

jc_0011: Optimization parameters for Boolean data types ‘
Strongly recommended

MAAB

All

na_0002: Appropriate implementation of fundamental logical

and numerical operations

The optimization option for Boolean data types must be enabled (on).

MATLAB Version Option Name

R13SP2 and earlier Boolean Logic signals

R14 and later Use logic signals as Boolean data.

(versus double)

e Workflow

e Code Generation

V2.0

“Check optimization parameters for Boolean data types”

4-3

jc_0021: Model diagnostic settings

4-4

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0021: Model diagnostic settings
Strongly recommended
MAAB

All

None

The following diagnostics must be enabled. An enabled diagnostic

is set to warning or error. Setting the diagnostic option to none is
not permitted. Diagnostics that are not listed may be set to any value
(none, warning, or error).

Solver Diagnostics

e Algebraic loop
¢ Minimize algebraic loop

Sample Time Diagnostics

e Multitask rate transition

Data Validity Diagnostics

e Inf or NaN block output
® Duplicate data store names

Connectivity

¢ Unconnected block input ports
¢ Unconnected block output ports
® Unconnected line

¢ Unspecified bus object at root Outport block

jc_0021: Model diagnostic settings

Rationale

Last
Changed

Model
Advisor
Check

Mux blocks used to create bus signals

Invalid function-call connection

Element name mismatch

Workflow

Code Generation

V2.0

“Check model diagnostic settings”

4-5

jc_0021: Model diagnostic settings

4-6

Simulink

¢ “Diagram Appearance” on page 5-2
® “Signals” on page 5-27

¢ “Block Usage” on page 5-35

¢ “Block Parameters” on page 5-55

® “Simulink Patterns” on page 5-62

5 Simulink®

Diagram Appearance

db_0032: Simulink signal
appearance

db_0042: Port block in Simulink
models

db_0043: Simulink font and font size

db_0140: Display of basic block
parameters

db_0141: Signal flow in Simulink
models

db_0142: Position of block names

db_0146: Triggered, enabled,
conditional Subsystems

je_0061: Display of block names
jc_0081: Icon display for Port block

jc_0171: Maintaining signal flow
when using Goto and From blocks

jc_0281: Naming of Trigger Port
block and Enable Port block

jm_0002: Block resizing

jm_0010: Port block names in
Simulink models

jm_0013: Annotations

na_0004: Simulink model
appearance

5-2

na_0004: Simulink model appearance

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0004: Simulink model appearance

Recommended

MAAB

All

None

The model appearance settings should conform to the following
guidelines when the model is released. You can change the settings

during the development process.

View Options Setting
Model Browser Cleared
Screen color White
Status Bar Selected
Toolbar Selected
Zoom factor Normal (100%)
Block Display Options Setting
Background Color White
Foreground Color Black
Execution Context Indicator Cleared
Library Link Display None
Linearization Indicators Selected
Model/Block I/O Mismatch Cleared
Model Block Version Cleared
Sample Time Colors Cleared
Sorted Order Cleared

5-3

na_0004: Simulink model appearance

Signal Display Options Setting
Port Data Types Cleared
Signal Dimensions Cleared
Storage Class Cleared
Test point Indicators Selected
Viewer Indicators Selected
Wide Non-scalar Lines Selected

Rationale e Readability
o Workflow

Last V2.0

Changed

Model “Check for Simulink diagrams that have nonstandard appearance

Advisor attributes”

Check

5-4

db 0043: Simulink font and font size

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

db_0043: Simulink font and font size
Strongly recommended
MAAB

All

None

All text elements (block names, block annotations, and signal labels)
except free text annotations within a model, must have the same font
style and font size. Select font style and font size for legibility.

Note The selected font should be portable (for example, the Simulink
and Stateflow default font) or convertible between platforms (for
example, Arial or Helvetica 12pt).

® Readability
* Workflow

V2.0

“Check for difference in font and font sizes”

5-5

db 0042: Port block in Simulink models

ID: Title db_0042: Port block in Simulink models
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description In a Simulink model, ports must comply with the following rules:
® Place Inport blocks on the left side of the diagram; you may move
them to prevent signal crossings.

e Place Outport blocks on the right side of the diagram; you may move
them to prevent signal crossings.

® You may use duplicate Inport blocks at the subsystem level, if
required, but avoid doing so, if possible.

Do not use duplicate Inport blocks at the root level.

Rationale Readability

Last V2.0

Changed

Model “Check for invalid port positioning and configuration”
Advisor

Check

5-6

na_0005: Port block name visibility in Simulink

models

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0005: Port block name visibility in Simulink models
Strongly recommended
MAAB

All

None

While for some items, it is not possible to define a single approach that
may apply to all organizations’ internal processes, it is important that,
at least within a given organization, a single consistent approach is
followed. An organization applying the guidelines must enforce one of
the following alternatives.

Apply one of the following practices:

® The name of an Inport or Outport block is not hidden.
(Format > Hide Name is not allowed.)

{ 1 } EnaRFM LFP P EngREM_LF
EngRPM_LP =~ -
EngRPM_Fitt-———————p{_ 1)
== <EngRPM_Filt:

£ng

EngRPM_UnFilt

EngineRPM_Filter
¢ The name of an Inport or Outport block must be hidden.
(Format > Hide Name is used.)

Exception: The names cannot be hidden inside library subsystem
blocks.

na_0005: Port block name visibility in Simulink models

EngineRPM_Filter

Rationale Readability

Last V2.0

Changed

Model “Check visibility of port block names”
Advisor

Check

5-8

jc_0081: Icon display for Port block

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

jc_0081: Icon display for Port block
Recommended
MAAB

R14 and later

None

The Icon display setting should be set to Port number for Inport and
Outport blocks.

Correct
Incorrect
Readability
V2.0

5-9

jc_0081: Icon display for Port block

Model “Check whether model has unconnected block input ports, output ports,
Advisor or signal lines”
Check

5-10

jm_0002: Block resizing

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jm_0002: Block resizing
Mandatory
MAAB

All

None

All blocks in a model must be sized such that the icon is completely
visible and recognizable. In particular, any displayed text (for example,
tunable parameters, file names, or equations) in the icon must be
readable.

This guideline requires that you resize blocks with variable icons or
blocks with a variable number of inputs and outputs. In some cases, it
may not be practical or desirable to resize the icon of a subsystem block
so that all of the input and output names within it are readable. In such
cases, you may hide the names in the icon by using a mask or by hiding
the names in the subsystem associated with the icon. If you do this,
the signal lines coming into and out of the subsystem block should be
clearly labeled in close proximity to the block.

| tunable_parameber_value }, " 1 :!-w_m1

Congtant 3 2e03 dinpat_sigraid
§ Digcrete

1000 === |5 ».:II\>. TransferFen [roi-sns aian e
3 D= 510 > dinput_s "

=
Galn Fram Angat_sionms

Drata Type
Carmersion Subsysiem

Correct

5-11

jm_0002: Block resizing

5-12

Rationale

Last
Changed

Model
Advisor
Check

1

Er0.5

Constant
E Discrete
)E/\’» ignals 3 Transfer Fen
= 5

Gain From Data Type
Conwersion
Incorrect
Readability
V2.0

Not applicable

subsystemn

db 0142: Position of block names

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites
Description

Rationale

Last
Changed

Model
Advisor
Check

db_0142: Position of block names
Strongly recommended
MAAB

All

None
If shown, place the name of a block below the block.

® Readability
* Workflow

V2.0

“Check whether block names do not appear below blocks”

5-13

jc_0061: Display of block names

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

jc_0061: Display of block names
Recommended
MAAB

All

None

¢ Display a block name when it provides descriptive information.

® Do not display a block name if the block function is known and
understood from the block appearance.

Readability

V2.0

“Check the display attributes of block names”

db_0146: Triggered, enabled, conditional Subsystems

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

db_0146: Triggered, enabled, conditional Subsystems
Strongly recommended
MAAB

All

None

Place blocks that define subsystems as conditional or iterative at a
consistent location at the top of the subsystem diagram. This applies to
the following types of subsystem blocks:

® Function call
® Enabled

* Triggered

o If /Else Action

® Readability
* Workflow

e Verification and Validation

V2.0

“Check for improperly positioned Trigger and Enable blocks”

5-15

db_0140: Display of basic block parameters

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

db_0140: Display of basic block parameters
Recommended
MAAB

All

None

Display important parameters with values other than the block default
values.

Note The attribute string is one method to support this. The block
annotation tab allows you to add the attribute information that you
want.

® Readability

e Verification and Validation

V2.0

“Check for display of nondefault block attributes”

jm_0013: Annotations

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Adyvisor
Check

jm_0013: Annotations
Strongly recommended
MAAB

R12.1

None

Annotations should not have a drop shadow. (Format > Show Drop
Shadow is not allowed.)

This Is a correct
annotation

This is an incorrect
annotation

Readability

V2.0

“Check whether annotations have drop shadows”

5-17

db_0032: Simulink signal appearance

5-18

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0032: Simulink signal appearance
Strongly recommended
MAAB

All

None

Signal lines

Should not cross each other, if possible

Are drawn with right angles

Are not drawn one upon the other

® Do not cross any blocks

Should not split into more than two sublines at a single branching
point

0 =

Eonstant Taamimator
{35
Tarminator
{3
Tarminato
Correct

db_0032: Simulink signal appearance

Rationale

Last
Changed

Model
Advisor
Check

Tarminatod

Bl —1
Lall =

L]

Temminator!

Teminatorz

Constant

Incorrect

® Readability
e Workflow

V2.0

Not applicable

5-19

db_0141: Signal flow in Simulink models

ID: Title
Priority
Scope
Versions
Prerequisites

Description

Rationale

5-20

db_0141: Signal flow in Simulink models
Strongly recommended

MAAB

All

None

The signal flow in a model is from left to right.

Exception: Feedback loops

Sequential blocks or subsystems are arranged from left to right.
Exception: Feedback loops

Parallel blocks or subsystems are arranged from top to bottom.

LIJ—I‘--wu

M“—I—.'MLH' T B g e L -
- Bprin | — e

- i
Iru.:r_t? n i B -ﬁu:lu [T Ry (= TR P el ki
g Tmalin Fromd it —e T)
L :} oo . F{W Tk et Duripar®l
m_._ [Tl B3 Fropthei A3 il = | _.m
Inputl . DutpatD
e e

e Dl =i, &
(o wea] Signal flow should be drawn from left to right e
reus —{_t)
(&
bputF
[heere
o
patH

® Readability
* Workflow

db_0141: Signal flow in Simulink models

Last
Changed

Model
Advisor
Check

e Verification and Validation

V2.0

“Check for proper use of Switch blocks”

5-21

jc_0171: Maintaining signal flow when using Goto and
From blocks

5-22

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0171: Maintaining signal flow when using Goto and From blocks
Strongly recommended
MAAB

All

None

® You must maintain visual depiction of signal flow between
subsystems.

® You can use Goto and From blocks provided that you use at least one
signal line between connected subsystems.

¢ [f the subsystems are connected in a feed-forward and a feedback
loop, you must connect at least one signal line for each direction.

(e r e - M PR
et o S O . i~==_‘ * .
P — | —
W=] e e e o i |
—
Correct

[c_0171: Maintaining signal flow when usin

Goto

and From blocks

Rationale

Last
Changed

Model
Adyvisor
Check

. L (P SR, - |
[T - L | [e S I_H-: il inaa]
e T = | L ey e

EngRFUlo Falae

T S 4 | P L
(oo e ooy T [—— e TTeaiasea]]

s
e
e | e i
s N A, -
T --m'_';—p-El—pu'--m LR Yy
rT:m":;—p-I |—p'-:h:.u Tomlng |7 [Toeling
Fumghiu
Incorrect

® Readability
e Workflow

e Verification and Validation

V2.0

Not applicable

5-23

jm_0010: Port block names in Simulink models

5-24

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jm_0010: Port block names in Simulink models

Strongly recommended
MAAB

All

e db_0042: Port block in Simulink models

® na_0005: Port block name visibility in Simulink models

For some items, though you may not be able to define a single approach
for internal processes of all organizations, within a given organization,
try to follow a single, consistent approach. An organization applying the
guidelines must enforce one of the following:

® The names of Inport blocks and Outport blocks must match the
corresponding signal or bus names.

Exceptions:

= When any combination of an Inport block, an Outport block, and
any other block have the same block name, use a suffix or prefix on
the Inport and Outport blocks.

= One common suffix / prefix is in_ for Inport blocks and _out for
Outport blocks.

You may use any suffix or prefix on the ports, however, the prefix
that you select must be consistent.

Library blocks and reusable subsystems that encapsulate generic
functionality.

¢ When the names of Inport and Outport blocks are hidden, apply
a consistent naming practice for the blocks. Suggested practices
include leaving the default names (for example, Out1), giving them

jm_0010: Port block names in Simulink models

the same name as the associated signal, or giving them a shortened
or mangled version of the name of the associated signal.
Rationale * Readability
* Workflow

e Simulation

Last V2.0

Changed

Model “Check for mismatches between names of ports and corresponding
Advisor signals”

Check

5-25

E|_Of(8'l: Naming of Trigger Port block and Enable Port
oc

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block
Priorii'y Strongly recommended

Scope J-MAAB

MATLAB All

Versions

Prerequisites None

Description For Trigger and Enable port blocks, match the block name of the signal
triggering the subsystem.

D& » i

Taskstl
TaskZms
Ly
‘ \|~\ I1100% j [

Rationale Readability

Last V2.0

Changed

Model “Check Trigger and Enable block port names”
Advisor

Check

5-26

jc_0281: Naming of Trigger Port block and Enable
Port block

Signals

db_0081: Unconnected signals,
block inputs and block outputs

db_0097: Position of labels for
signals and busses

na_0008: Display of labels on
signals

na_0009: Entry versus
propagation of signal labels

The preceding guidelines apply to signals and signal labels. For
background information, see “Signals and Signal Labels” on page D-3.

Some of the preceding guidelines refer to basic blocks. For an

explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-27

na_0008: Display of labels on signals

5-28

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0008: Display of labels on signals

Recommended

MAAB

All

None

¢ A label must be displayed on a signal originating from the following
blocks:

Inport block
From block (block icon exception applies — see the Note below
Data Store Read block (block icon exception applies)

Subsystem block or Stateflow chart block (block icon exception
applies)

Constant block (block icon exception applies)

Bus Selector block (the tool forces this to happen)
Demux block

Selector block

¢ A label must be displayed on any signal connected to the following
destination blocks (directly or by way of a basic block that performs
a nontransformative operation):

Outport block

Goto block

Data Store Write block
Bus Creator block

na_0008: Display of labels on signals

Rationale

Last
Changed

Model
Adyvisor
Check

= Mux block
= Subsystem block
= Chart block

Note Block icon exception (applicable only where called out): If

the signal label is visible in the originating block icon display, the
connected signal does not need to have the label displayed, unless the
signal label is needed elsewhere due to a destination-based rule.

¢ In addition, a label may be displayed on any other signal of interest
to you or your customers.

CalvVar_1

Calvar_2 Calvar_2

® Readability
Workflow

Verification and Validation

Code Generation

V2.0

“Check for proper labeling on signal lines”

5-29

na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels
Priority Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites na_0008: Display of labels on signals

Description If a label is present on a signal, the following rules define whether that
label is created there (entered directly on the signal) or propagated from
its true source (inherited from elsewhere in the model by using the less
than (<) character).

® Any displayed signal label must be entered for signals that:

= Originate from an Inport at the Root (top) Level of a model

= Originate from a basic block that performs a transformative
operation (For the purpose of interpreting this rule only, the
Bus Creator block, Mux block, and Selector block are considered
to be included among the blocks that perform transformative
operations.)

* Any displayed signal label must be propagated for signals that:
= Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a
label may be entered on the signal coming from the Inport to
accommodate reuse of the library block.

= Originate from a basic block that performs a nontransformative
operation

= Originate from a Subsystem or Stateflow chart block

5-30

na_0009: Entry versus propagation of signal labels

Rationale

Last
Changed

Model
Advisor
Check

Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the
signal to accommodate reuse of the library block.

K TOTY e p{D
o
Ready

Al

Readability
Workflow

Verification and Validation

Code Generation

V2.0

“Check for propagated labels on signal lines”

5-31

db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The labels must be visually associated with the corresponding signal
and not overlap other labels, signals, or blocks.

Labels should be located consistently below horizontal lines and close to
the corresponding source or destination block.

Rationale * Readability
e Workflow

Last V2.0

Changed

Model Not applicable

Advisor

Check

5-32

db_0081: Unconnected signals, block inputs and block

outputs

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

db_0081: Unconnected signals, block inputs and block outputs
Mandatory
MAAB

All

None

A system must not have any:

® Unconnected subsystem or basic block inputs
¢ Unconnected subsystem or basic block outputs

¢ Unconnected signal lines
In addition:

® An otherwise unconnected input should be connected to a ground
block

® An otherwise unconnected output should be connected to a terminator
block

® Readability
* Workflow

e Verification and Validation

V2.0

5-33

db_0081: Unconnected signals, block inputs and block
outputs

Model “Check whether model has unconnected block input ports, output ports,
Advisor or signal lines”
Check

5-34

db_0081: Unconnected signals, block inputs and block
outputs
|

Block Usage

hd_0001: Prohibited Simulink
sinks

jc_0121: Use of the Sum block

jc_0131: Use of Relational
Operator block

jc_0141: Use of the Switch block

jc_0161: Use of Data Store
Read/Write/Memory blocks

jm_0001: Prohibited Simulink
standard blocks inside controllers

na_0002: Appropriate
implementation of fundamental
logical and numerical operations

na_0003: Simple logical
expressions in If Condition
block

na_0011: Scope of Goto and From
blocks

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-35

na_0003: Simple logical expressions in If Condition
block

5-36

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0003: Simple logical expressions in If Condition block
Mandatory
MAAB

All

None

A logical expression may be implemented within an If Condition block
instead of building it up with logical operation blocks, if the expression
contains two or fewer primary expressions. A primary expression is
defined as one of the following:

® An input

® A constant

® A constant parameter

® A parenthesized expression containing no operators except zero or
one instance of the following operators: <, <=, > >= ~= == ~, (See
the following examples.)

Exception

A logical expression may contain more than two primary expressions
if both of the following are true:

® The primary expressions are all inputs

® Only one type of logical operator is present

Examples of Acceptable Exceptions

® ul | u2 | u3 | u4 | us
* ul & u2 & ul3 & u4

na_0003: Simple logical expressions in If Condition
block

Examples of Primary Expressions

® ui
*5
* K
(ul >0)
(u1 <=0)

(ut > U2)

* (~u1)

Examples of Acceptable Logical Expressions
* utl | u2

® (u1>0) & (u1 <20)

® (U1 >0) & (U2 <ul)

* (u1>0) & (~u2)

Examples of Unacceptable Logical Expressions

ul & u2 | u3 (too many primary expressions)

ul & (u2 | ud) (unacceptable operator within
primary expression)

(u1>0) & (u1 <20) & (U2 >5) (too many primary expressions
that are not inputs)

(u1 >0) & ((2*u2) > 6) (unacceptable operator within
primary expression)

Rationale Readability
e Workflow

5-37

na_0003: Simple logical expressions in If Condition
block

Last V2.0
Changed

Model Not applicable
Advisor

Check

5-38

na_0002: Appropriate implementation of fundamental
logical and numerical operations

ID: Title na_0002: Appropriate implementation of fundamental logical and
numerical operations

Priorii'y Mandatory
Scope MAAB
MATLAB All
Versions

Prerequisites None

Description ® Blocks that are intended to perform numerical operations must not
be used to perform logical operations.

Incorrect

® A logical output should never be connected directly to the input of
blocks that operate on numerical inputs.

® The result of a logical expression fragment should never be operated
on by a numerical operator.

5-39

na_0002: Appropriate implementation of fundamental
logical and numerical operations

!

[MDD [BeiE

!

Incorrect

¢ Blocks that are intended to perform logical operations must not be
used to perform numerical operations.

¢ A numerical output should never be connected to the input of blocks
that operate on logical inputs.

Incorrect

Rationale Readability

e Workflow
Last V2.0
Changed
Model Not applicable
Advisor
Check

5-40

jm_0001: Prohibited Simulink standard blocks inside
controllers

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jm_0001: Prohibited Simulink standard blocks inside controllers
Mandatory
MAAB

All

None

Controller models must be designed from discrete blocks.
The following sources are not allowed:

Signal Generator

Step

Ramp

Sine Wave

Repeating Sequence
Discrete Pulse Generator
Pulse Generator

Chirp Signal

Clock

Digital Clock

From File

From Workspace

Random Number
Uniform Random Number
Band-Limited White Noise

The following continuous blocks are not allowed:

Integrator

Derivative

Transport Delay
Variable Transport Delay

5-41

jm_0001: Prohibited Simulink standard blocks inside
controllers

State-Space
Transfer Fen
Zero-Pole

The following additional blocks are not allowed. The MAAB Style guide
group recommends not using the following blocks. The list may be
extended by individual companies.

Slider Gain

Algebraic Constraint
Manual Switch

Complex to Magnitude-Angle
Magnitude-Angle to Complex
Complex to Real-Imag
Real-Imag to Complex

Hit Crossing

Polynomial

MATLAB Fcn

Goto Tag Visibility

Probe

Rationale ¢ Readability
o Workflow

® Code Generation

Last V2.0

Changed

Model “Check for blocks that are not discrete ”
Advisor

Check

5-42

hd 0001: Prohibited Simulink sinks

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

hd_0001: Prohibited Simulink sinks
Strongly recommended
MAAB

All

None

Controller models must be designed from discrete blocks.

The following sink blocks are not allowed:

Scope

XY Graph
Display

To File

To Workspace
Stop Simulation
Floating Scope

® Readability
e Workflow

V2.0

“Check for prohibited sink blocks”

5-43

na_0011: Scope of Goto and From blocks

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

5-44

na_0011: Scope of Goto and From blocks
Strongly recommended
MAAB

All

None

For signal flows, From and Goto blocks must use local scope.

Note Control flow signals may use global scope.

® Readability
* Workflow

® Code Generation

V2.0

“Check for proper scope of From and Goto blocks”

jc_0141: Use of the Switch block

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0141: Use of the Switch block
Strongly recommended
MAAB

All

None

® The switch condition, input 2, must be a Boolean value.

® The block parameter, Criteria for passing first input, should be
set to u2~=0.

® The block parameter, Criteria for passing first input, must not be
set to u2>threshold for R13 versions of MATLAB.

5-45

jc_0141: Use of the Switch block

dauble
IRl
20
Switch
=] Function Block Parameters: Switch x|
— Switch

Fazz through input 1 when input 2 zatizfies the selected critenion; athenwize, pass
through input 3. The inputs are numbered top ko battorn [or left ta right]. The input 1
pazz-through critenia are input 2 greater than or equal. greater than, or not equal ta
the threshold. The first and third input ports are data portz, and the second input pork
iz the control port.

b ity I Sigrnal Data Types

Critena for pazsing first input: | u2 ~=10 LI
Threshald: uZ »= Threshold
o

Correct

@ diouble

In1

b ain I Signal Data Tepes |
Criteria for passingdirst input: |uz »= Threshold)

T hreshald:
|20

Incorrect

5-46

jc_0141: Use of the Switch block

Rationale

Last
Changed

Model
Advisor
Check

® Readability
e Workflow

V2.0

“Check for proper use of Switch blocks”

5-47

jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block
Priority Recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Desc ription Sum blocks should:

e Use the “rectangular” shape.

* Be sized so that the input signals do not overlap.

Correct

5-48

[c_.0121: Use of the Sum block

Incorrect

You may use the round shape in feedback loops.

¢ There should be no more than three inputs.
¢ Position the inputs at 90,180,270 degrees.
® Position the output at 0 degrees.

%_wmm_
input auput

Correct

5-49

jc_0121: Use of the Sum block

5-50

Incorrect

Faind

B
L]
T

Correct

Incorrect

jc_0121: Use of the Sum block

Rationale Readability
Last V2.0
Changed

Model Not applicable
Advisor

Check

5-51

jc_0131: Use of Relational Operator block

5-52

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

jc_0131: Use of Relational Operator block
Recommended
J-MAAB

All

None

When the relational operator is used to compare a signal to a constant
value, the constant input should be the second (lower) input signal.

Correct

m —

S|

P BB
{1
AR
P lainarial
e aton
Incorrect
Readability
V2.0

jc_0131: Use of Relational Operator block
|

Model “Check for proper position of constants used in Relational Operator
Advisor blocks”
Check

5-53

jc_0161: Use of Data Store Read/Write/Memory blocks

ID: Title jc_0161: Use of Data Store Read/Write/Memory blocks
Priorii'y Strongly recommended

Scope J-MAAB

MATLAB All

Versions

Prerequisites jc_0341: Data flow layer

Description ® Prohibited in a data flow layer
® Allowed between subsystems running at different rates
Rationale * Readability
e Workflow
Last V2.0
Changed
Model Not applicable
Advisor
Check

5-54

jc_0161: Use of Data Store Read/Write/Memory
blocks
|

Block Parameters
db_0110: Tunable parameters in
basic blocks
db_0112: Indexing

na_0010: Grouping data flows
into signals

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-55

db_0112: Indexing

5-56

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0112: Indexing
Strongly recommended
MAAB

All

None

One-based indexing [1, 2, 3,...] is for:

e MATLAB

Workspace variables and structures
Local variables of functions written in M-code
Global variables

e Simulink
Signal vectors and matrices
Parameter vectors and matrices
S-function input and output signal vectors and matrices in M-code

S-function parameter vectors and matrices in M-code
S-function local variables in M-code

e Stateflow

Input and output signal vectors and matrices
Parameter vectors and matrices
Local variables

Zero-based indexing [0, 1, 2, ...] is for:

e Simulink

S-function input and output signal vectors and matrices in C

db_0112: Indexing

Rationale

Last
Changed

Model
Advisor
Check

S-function input parameters in C
S-function parameter vectors and matrices in C
S-function local variables in C

Stateflow

Custom variables and structures in C

C code

Local variables and structures
Global variables

Readability
Workflow

Code Generation

V2.0

“Check for blocks not using one-based indexing”

5-57

na_0010: Grouping data flows into signals

5-58

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0010: Grouping data flows into signals
Strongly recommended
MAAB

All

None

Vectors

The individual scalar signals composing a vector must have common
functionality, data types, dimensions, and units. The most common
example of a vector signal is sensor or actuator data that is grouped into
an array indexed by location. The output of a Mux block must always be
a vector. The inputs to a Mux block must always be scalars.

Busses

Signals that do not meet criteria for use as a vector, as previously
described, must only be grouped into bus signals. Use Bus Selector
blocks only with a bus signal input; do not use them to extract scalar
signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Row vector [1 n]

Column vector [n 1]

Wheel speed vector [1 Number of wheels]
Cylinder vector [1 Number of cylinders]

na_0010: Grouping data flows into signals

Rationale

Last
Changed

Model
Adyvisor
Check

Vector type Size
Position vector based on 2D [1 2]
coordinates
Position vector based on 3D [1 3]
coordinates

Some examples of bus signals include:

Bus type

Elements

Sensor Bus

Force Vector [Fx, Fy, Fz]

Position

Wheel Speed Vector [0, O, O,, O_]

Ir>

Acceleration

Pressure

Controller Bus

Sensor Bus

Actuator Bus

Serial Data Bus

Coolant Temperature

Engine Speed, Passenger Door Open

® Readability
e Workflow

V2.0

“Check for proper use of signal buses and Mux block usage”

5-59

db_0110: Tunable parameters in basic blocks

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

5-60

db_0110: Tunable parameters in basic blocks
Strongly recommended
MAAB

All

None

To ensure that a parameter is tunable, enter it in the basic block:

* Without any expression.
e Without a data type conversion.

e Without selection of rows or columns.

[tunable_parameter_value b [tunable_parameter_vector b [mnable_parameter_arsy
Correct

[wnakte_paramster_vaue™2 b [wnable_parameler_vectord b [tunable_parameter_ama®3
| i1 Bunable_paramiber_walue) b | banakli_paraméter_vectanl) b | Danaklis_pararmdir_sera,1) }a
Incorrect

® Readability
e Workflow

® (Code Generation

V2.0

}

db_0110: Tunable parameters in basic blocks

Model “Check whether tunable parameters specify expressions, data type
Advisor conversions, or indexing operations”
Check

5-61

db_0110: Tunable parameters in basic blocks

Simulink Patterns

db_0114: Simulink patterns for
If-then-else-if constructs

db_0115: Simulink patterns for
case constructs

db_0116: Simulink patterns for
logical constructs with logical
blocks

db_0117: Simulink patterns for
vector signals

jc_0111: Direction of Subsystem
jc_0351: Methods of initialization

na_0012: Use of Switch vs.
If-Then-Else Action Subsystem

The preceding guidelines illustrate sample patterns used in Simulink
diagrams. As such, the patterns normally would be part of a much
larger Simulink diagram.

Some of the preceding guidelines refer to basic blocks. For an

explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-62

na_0012: Use of Switch vs. If-Then-Else Action

Subsystem

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Strongly recommended
MAAB

All

None

The Switch block should be used for modeling simple if-then-else
structures, if the associated then and else actions involve only the

assignment of constant values.

IF_“falue

baolean

double

dauble

IF_Condition

Else_Wfalue

The if-then-else action subsystem construct:

double

\

¢ Should be used for modeling if-then-else structures, if the associated
then and/or else actions require complicated computations. This
maximizes simulation efficiency and the efficiency of generated code.
(Note that even a basic block, for example a table lookup, may require
fairly complicated computations.)

5-63

na 0012: Use of Switch vs. If-Then-Else Action
Subsystem

dut)
| 1)
DynamicSlipFlagl eise

"Outt
TireSlipConst
N
#lWheelSpeed €52] ¥ Merge |——»
| Out1 S TireSlip
EngSpeed

CalculateTireSlip

® Must be used for modeling if-then-else structures, if the purpose of
the construct is to avoid an undesirable numerical computation, such
as division by zero.

¢ Should be used for modeling if-then-else structures, if the explicit or
implied then or the else action is just to hold the associated output
values.

In other cases, the degree of complexity of the then and/or else action
computations and the intelligence of the Simulink simulation and code
generation engines determine the appropriate construct.

These statements also apply to more complicated nested and cascaded
if-then-else structures and case structure implementations.

Rationale e Readability
o Workflow

Last V2.0

Changed

Model Not applicable

Advisor

Check

5-64

db_0114: Simulink patterns for If-then-else-if

constructs

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0114: Simulink patterns for If-then-else-if constructs
Strongly recommended
MAAB

All

None

Use the following patterns for If-then-else-if constructs within a
Simulink model:

5-65

db_0114: Simulink patterns for If-then-else-if constructs

Equivalent Functionality Simulink Pattern
if then else if with blocks

if (If_Condition) ({ _Value =t)
output_signal = If_Value; smea T 211] ostie
} 1| H_Congtae == 1
else if (Else_If_Condition) {
output_signal =
Else_If_Value; s
:
else { —
output_signal =

Else_Value;

}

if then else if with if/then/else
subsystems

if (Fault_1_Active & Fa_1 ek

Fault_2 Active) Bl] . |2 [:i:] -

ErrMsg = SaftyCrit; [:j::] : whiergel 0000
else if (Fault_1_Active | - i
Fault_2_Active)

{
ErrMsg = DriveWarn;
}
else
{
ErrMsg = NoFaults;
}
Rationale e Readability
e Workflow

5-66

db_0114: Simulink patterns for If-then-else-if
constructs

® Code Generation

Last V2.0
Changed

Model Not applicable
Advisor

Check

5-67

db_0115: Simulink patterns for case constructs

ID: Title

db_0115: Simulink patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description Use the following patterns for case constructs within a Simulink model:
Equivalent Functionality Simulink Pattern

case with Switch Case block

switch (PRNDL_Enum)

{

case 1

TqEstimate

break;
case 2

TqEstimae

break;
default

TqEstimate

break;

}

ParkV;

RevV;

NeutralV;

5-68

db_0115: Simulink patterns for case constructs

Equivalent Functionality Simulink Pattern

case with subsystems

output_versioni =
function_versiont(input_signal); = ,
output_version2 = ey
function_version2(input_signal);
output_version3 =
function_version3(input_signal);
output_version4 =
function_version4(input_signal);
switch (selection) { — g ol et
case 1: o .
output_signal
break;

case 2: TR el i PRI

output_versioni;

output_signal
break;
case 3:
output_signal output_version3;
break; ., r L |
case 4:
output_signal

output_version2;

output_version4;

5-69

db_0115: Simulink patterns for case constructs

Equivalent Functionality Simulink Pattern

}

case with enabled subsystems

switch (selection) {
case 1: e I "
output_versioni = i

function_versioni (input_signal);
output_signal = output_versioni;
break;

case 2:

output_version2 =
function_version2(input_signal);
output_signal = output_version2;
break;

case 3:

output_version3 = -
function_version3(input_signal); CEE] e
output_signal = output_version3; : —r—a e L B =
break; g
default:

output_version4 =
function_version4(input_signal);
output_signal = output_version4;

kL4

Y

F1)

ry
.

}
Rationale e Readability
e Workflow
e Verification and Validation
Last V2.0
Changed

5-70

db_0115: Simulink patterns for case constructs

Model Not applicable

Advisor
Check

5-71

db_0116: Simulink patterns for logical constructs with
logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description Use the following patterns for logical combinations within Simulink:

5-72

db_0116: Simulink patterns for logical constructs with

logical blocks

Equivalent Functionality

Simulink Pattern

Combination of logical signals:
conjunctive

input_signall
input_signal2

input_signal2

AND

input_signald

e ——
input_signals

AND

oR

input_signalt

P

h

»

input_signal?

input_signalg

output_signal

Combination of logical signals:
disjunctive

inpul_signal

inpui_signal =~

input_signal3

inpul_signald

input_signals

inpul_signal

.

OR

OR

L J

L J

OR

L

inpui_signal? =~

input_signald

altput_signal

Rationale * Readability

5-73

db_0116: Simulink patterns for logical constructs with
logical blocks

¢ Workflow

e Verification and Validation

Last V1.0
Changed

Model Not applicable
Advisor

Check

5-74

db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals
Priority Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description Use the following patterns for vector signals within a Simulink model:

Equivalent Functionality Simulink Pattern

Vector loop

for (l=0; mﬁ-‘xn able :-:_'-:r;-:::zb: —— —

i>input_vector_size; it+) e S
Gain

{

output_vector(i) =
input_vector(i) *
tunable_parameter_value;

}
Vector loop

for (i=0; ._hl-!.'thl.'_:-_il'-\.l_'m;:-':"';‘.\?r_______——
i>input_vector_size; i++) B L_-——-":;:'_ R
{

output_vector(i) =

input_vector(i) *

tunable parameter_vector(i);

}

5-75

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Vector loop

output_signal = 1; >

for (i=0; input_wectar]_I output_signa
i>input_vector_size; i++) Froduct

{

output_signal =
output_signal *
input_vector(i);

}

Vector loop

output_signal = 1; .._l_

for (i=0; input_vector TT | output_signal
i>input_vector_size; i++) Froduct

{

output_signal =
output_signal /
input_vector(i);

}

Vector loop

for (1i=0; »
.. R . inpul_wactar
i>input_vector_size; i++) B

- - - output_vectar
{ lunable_parameater_value
output_vector(i) = Constant

Sum

input_vector(i) +
tunable _parameter_value;

}

5-76

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Vector loop

for (i=0; *
C . . input_vactor
i>input_vector_size; i++)

output_wector
{ tunable_pararmater_wvactor

output_vector(i) = Constant
input_vector(i) +
tunable_parameter_vector(i);

}

Sum

Vector loop:

output_signal = 0;

for (i=0; — E .
i>input_vector_size; i++) input_vector output_signa
{ sum
output_signal =
output_signal +
input_vector(i);

}

Vector loop:

output_signal = 0;

for (1i=0; _.,_E :
i>input_vector_size; i++) Input_vector output_signal
{ sum
output_signal =
output_signal -
input_vector(i);

}

5-77

db_0117: Simulink patterns for vector signals

5-78

Equivalent Functionality Simulink Pattern

Minimum or maximum of a signal or a

vector over time:

—

—
inpul_signal ~ | min "
autpul_signal_rmin

Minkax

| ==

r

Uinst_Dwilay

—_—
Inpud_vecior |rnae
> oufput_wechor_mae

1
L2 |
Linil_Dhelay

Change event of a signal or a vector:

ifed_Rigmial =1 ~
- pasl_signal_thange
Lim]_ Doy Reaonal
Oipsdradar :I:
InpLA_wecios _
AR _rchin_gPangh
-
Uni_Delay Reladonal
Oprator
gL wecios ; Mon
1 . | TPl _verii_tharge
: Logical
Usil_Deday Reladonal Dperalor
Opesai

Rationale

Readability
Workflow
Verification and Validation

Code Generation

db_0117: Simulink patterns for vector signals

Last V1.0
Changed

Model Not applicable
Advisor

Check

5-79

jc_0351: Methods of initialization

5-80

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0351: Methods of initialization
Recommended
MAAB

All

db_0140: Display of basic block parameters
Simple Initialization

® You may use blocks, such as the Unit Delay block, which have an
initial value field, to set simple initial values.

¢ To determine if the initial value should be displayed, see MAAB
Guideline db_0140: Display of basic block parameters.

A
Ind Outd

; <initial=0*
— —
z

Unit Crelay

<initial=0 *

Example

Initialization that Requires Computation

The following rules apply for complex initialization:

¢ The initialization should be performed in a separate subsystem.

® The initialization subsystem should have a name that indicates that
initialization is performed by the subsystem.

jc_0351: Methods of initialization

Complex initialization may be done at a local level (Example A), at a
global level (Example B), or a combination of local and global.

e hierge | :

v —
O— =5
Func_A_Running
Example A
(1 “}T (2 3
Initialize EventB Taskdms
£ f: .

Initialize_function TimingB_function Taskdms_function

Priority =1 Priority =2 Priority =3
Example B
Rationale Workflow
Last V2.0
Changed
Model Not applicable
Advisor
Check

5-81

jc_O111: Direction of Subsystem

ID: Title

Priority

Scope J-MAAB
MATLAB All
Versions

Prerequisites None

Description

Strongly recommended

jc_0111: Direction of Subsystem

Subsystem must not be reversed.

O

Inl

Correct

O

Inl

Incorrect

5-82

o

hi

n2

Dutl

Subsystemn

Ll

I

Subsystem!

1

Z

Lnit Delay

z
Uit Dwlany

n2

Dl

Subsystem

l—] Dut1

hi

Subsystemi

Dutl

Outl

jc_0111: Direction of Subsystem

Rationale

Last
Changed

Model
Advisor
Check

Readability

V2.0

“Check for direction of subsystem blocks”

5-83

jc_O111: Direction of Subsystem

5-84

Stateflow

¢ “Chart Appearance” on page 6-2

o “Stateflow Data and Operations” on page 6-20
e “Events” on page 6-39

e “Statechart Patterns” on page 6-43

¢ “Flowchart Patterns” on page 6-49

6 Stateflow®

Chart Appearance

db_0123: Stateflow port names

db_0129: Stateflow transition
appearance

db_0132: Transitions in Flowcharts

db_0133: Use of patterns for
Flowcharts

db_0137: States in state machines

jc_0501: Format of entries in a State
block

jc_0511: Setting the return value
from a graphical function

jc_0521: Use of the return value
from graphical functions

jc_0531: Placement of the default
transition

db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names
Priorii'y Strongly recommended
Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The name of a Stateflow input or output should be the same as the
corresponding signal.

Exception: Reusable Stateflow blocks may have different port names.

Rationale e Readability
* Workflow
Last V1.0
Changed
Model “Check for mismatches between Stateflow ports and associated signal
Advisor names”
Check

6-3

db_0129: Stateflow transition appearance

6-4

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0129: Stateflow transition appearance
Strongly recommended
MAAB

All

None

Transitions in Stateflow:

® Do not cross each other, if possible

Are not drawn one upon the other

* Do not cross any states, junctions, or text fields

Are allowed if transition is to an internal state

Transition labels may be visually associated to the corresponding
transition.

db_0129: Stateflow transition appearance

<tate] [condition1] ~
[condition2] statel
I

[condition]
{
action?:
}
oy L2

Correct

InitState

CwterStatel .

Innerstate’

db_0129: Stateflow transition appearance

state] [condition?

]/N)
[condiionZ] state?
[=

statel | State?
O——|
Incorrect
Rationale e Readability
e Workflow
Last V2.0
Changed
Model Not applicable
Advisor
Check

6-6

db 0137: States in state machines

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

db_0137: States in state machines
Mandatory
MAAB

All

db_0149: Flowchart patterns for condition actions
In state machines:

® At least two exclusive states exist
® A state must have multiple substates

® The initial state of a hierarchical level with exclusive states is clearly
defined by a default transition

® Readability
* Workflow

e Verification and Validation

V2.0

“Check for exclusive states, default states, and substate validity”

6-7

db_0133: Use of patterns for Flowcharts

ID: Title db_0133: Use of patterns for Flowcharts
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description A Flowchart is built with the help of Flowchart patterns (for example,
if-then-else, for loop, and so on):

® The data flow is oriented from the top to the bottom. *

e Patterns are connected with empty transitions.

Rationale * Readability
e Workflow

e Verification and Validation

Last V1.0
Changed

Model Not applicable
Advisor

Check

6-8

db 0132: Transitions in Flowcharts

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0132: Transitions in Flowcharts
Strongly recommended
MAAB

All

None

The following rules apply to transitions in Flowcharts:

e (Conditions are drawn on the horizontal.

Actions are drawn on the vertical.

® Loop constructs are intentional exceptions to this rule.

Transitions have a condition, a condition action, or an empty
transition.

[condition]

O =0

Transition with Condition

action;

Transition with Condition Action

6-9

db 0132: Transitions in Flowcharts

6-10

Empty Transition

Transition actions are not used in Flowcharts. Transition actions are
only valid when used in transitions between states in a state machine,
otherwise they are not activated because of the inherent dependency on
a valid state to state transition to activate them.

faction;

@, =0

Transition Action

At every junction, except for the last junction of a flow diagram, exactly
one unconditional transition begins. Every decision point (junction)
must have a default path.

) [condition]

{

action;

}

db 0132:

Transitions in Flowcharts

Rationale

Last
Changed

Model
Advisor
Check

* comment *f

™ comment ™/

— [condition)

™ comment *F

{

achon;

}

O=+—-0

Transitions with Comments

® Readability
e Workflow

e Verification and Validation

V2.0

“Check transition orientations in flow charts”

6-11

jc_0501: Format of entries in a State block

6-12

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0501: Format of entries in a State block
Recommended
MAAB

All

None

A new line should be:

e Started after the entry (en), during (du), and exit (ex) statements.

e Started after the completion of an assignment statement

¥

(State

en:

entry value=1;
during value=0:
du:
entry_value=0;
during value=1;
ex:

exit_value=1;
\ Y,

@,
s .

~

Correct

jc_0501: Format of entries in a State block

Rationale

Last
Changed

Model
Adyvisor
Check

¥
State
en:entry_value=1:
during value=0;
du:entry_value=0;
during value=1;
& x:exit_value=2;

-\‘I

Incorrect

Failed to start a new line after en, du, and ex.

State
en:entry_value=1:during value=0;duentry_value=0;
during value=1;ex:exit_value=2:

Incorrect

Failed to start a new line after the completion of an assignment
statement “;”.

Readability

V2.0

“Check for entry format in state blocks”

6-13

jc_O511: Setting the return value from a graphical
function

6-14

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0511: Setting the return value from a graphical function
Mandatory
J-MAAB

All

None

The return value from a graphical function must be set in only one place.

fumotion ASFIB.C)

Correct

Return value A is set in one place.

[c_O511: Setting the return value from a graphical
function

furetion A=F(B.C)
L

[3::|:|] Y [G::D]

P

— 5 —
1
.-_bl'.“ P
[
>
I
4

Incorrect

Return value A is set in multiple places.

Rationale e Workflow

® Code Generation

Last V2.0

Changed

Model “Check setting Stateflow graphical function return value”
Advisor

Check

6-15

jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition
Priority Recommended

Scope J-MAAB

MATLAB All

Versions

Prerequisites None

Description e Default transition is connected at the top of the state.

® The destination state of the default transition is put above the other
states in the same hierarchy.

-

State | .

Sulb S off
&n;
tirmer=0;
du:
timer+=dT;

[timarsoff tima] |[timaron t
SubSt on
an:
tirmar=0;
du:
timers=dT:

Correct

¢ The default transition is connected at the top of the state.

¢ The destination state of the default transition is put above the other
states in the same hierarchy.

6-16

jc_0531: Placement of the default transition

Rationale

Last
Changed

Model
Advisor
Check

State|
SubSt on
8
tirngr=1

du
trnart=dT;

- -

Su St off
&
Limar=l
- 7]
timar+=dT,

Incorrect

® Default transition is connected at the side of the state (State 1).

® The destination state of the default transition is lower than the other
states in the same hierarchy (SubSt_off).

Readability

V2.0

“Check default transition placement in Stateflow charts”

6-17

jc_0521: Use of the return value from graphical
functions

6-18

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

jc_0521: Use of the return value from graphical functions
Recommended
J-MAAB

All

None

The return value from a graphical function should not be used directly
in a comparison operation.

[&= tamg testd) | The data type of the variable in the
comparison operationis clear

ICLA
ff‘émp_ = temp_testt)

Correct

An intermediate variable is used in the conditional expression after
the assignment of the return value from the function temp_test to
the intermediate variable a.

jc_0521: Use of the return value from graphical

functions

Rationale

Last
Changed

Model
Adyvisor
Check

[temp test() == 1

¥

%EEEZ temp_test(

Incorrect

Return value of the function temp_test is used in the conditional
expression.

Readability

V2.0

Not applicable

6-19

jc_0521: Use of the return value from graphical
functions

Stateflow Data and Operations

na_0001: Bitwise Stateflow
operators

6-20

na_0001: Bitwise Stateflow operators

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Adyvisor
Check

na_0001: Bitwise Stateflow operators
Strongly recommended
MAAB

All

None

The bitwise Stateflow operators (&, |, and ") should not be used in
Stateflow charts unless you want bitwise operations. If you do not want
bitwise operations, enable Enable C-bit operations.

To enable Enable C bit operations:

1 Select File > Chart Properties .

2 Select Enable C-bit operations.
Correct

Use && and II for Boolean operation.
Use & and I for bit operation.

Incorrect

Use & and I for Boolean operation.

e Simulation

® Code Generation

V2.0

Not applicable

6-21

jc_0451: Use of unary minus on unsigned integers in
Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow
Priorii'y Recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description Do not perform unary minus on unsigned integers.

L . I IHamE DataTypeI
si16_var1=-si16_var2; [ilsivez wtie
1

Correct

ui16_varl=-uil16_var2; I[:;.]I::j:; u[-).:t:;m

Incorrect

Rationale Readability
e Workflow

® (Code Generation

Last V2.0

Changed

Model “Check for use of tunable parameters in Stateflow”
Advisor

Check

6-22

na_0013: Comparison operation in Stateflow

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

na_0013: Comparison operation in Stateflow
Recommended
MAAB

All

None

e Comparisons should be made only between variables of the same
data type.

e If comparisons are made between variables of different data types,
the variables need to be explicitly type cast to matching data types.

. Li<nl _,
li<n]
I MHame | Data Type [
[i+] i uintd
[:+] n uintd
Correct

@

Same data type in “1” and “n”

, [i<d]

| I MHame I Data Twpe I
4] i uintd

[l;-] d int16
Incorrect

Different data type in “i” and “d”

6-23

na_0013: Comparison operation in Stateflow

Do not make comparisons between unsigned integers and negative
numbers.

\ [lint16i<d] o

I Mame I Data Type I

4] i uintd
[l :] d int16
Correct

[i<—1]
=
I Mame I Data Twpe I
[H?] i Lintd

21

R

Incorrect

Rationale e Workflow

® Code Generation

Last V2.0
Changed

Model Not applicable
Advisor

Check

6-24

db_0122: Stateflow and Simulink interface signals

and parameters

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

Last
Changed

Model
Advisor
Check

db_0122: Stateflow and Simulink interface signals and parameters
Strongly recommended
MAAB

All

None

A Chart uses strong data typing with Simulink and requires that you
select the Use Strong Data Typing with Simulink I/O parameter.

® Readability
* Workflow

e Verification and Validation

V2.0

“Check interface signals and parameters”

6-25

db_0125: Scope of internal signals and local auxiliary
variables

6-26

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0125: Scope of internal signals and local auxiliary variables
Strongly recommended
MAAB

All

None

Internal signals and local auxiliary variables are "Local data" in
Stateflow:

e All local data of a Stateflow block must be defined on the chart level
or below the Object Hierarchy.

® No local variables may exist on the machine level (that is, no
interaction should occur between local data in different charts).

® Parameters and constants are allowed at the machine level.

i | Edploring... model/char_ state

Fie Edt ook A4 Heb

Ojact Hisranchy Conterts of. (siate) madelichart state
- model Hame Scope Trigger Twpe Size Blin Max nifVal PSS ToWS Watch
- chat [-] data Local double 0
L] II
eventsll) daka(t) targetsily 1 [11]
Correct

db_0125: Scope of internal signals and local auxiliary

Rationale

Last
Changed

Model
Advisor
Check

iabl
variables
i Exploing.. model _ O] =}
fia Edt Took Add Mep
(ject Higrarchy C-ontenits of. (machine) model
% (R Name Scope Trigger Type Size Bhn Ma vl FOAS ToWS Walch
- @ chart [] dsta Local double 0
=] slate & =fun

1 Il-

events(0) data(l) fangets1) 2 1.4
Incorrect

® Readability
* Workflow

e Verification and Validation

V2.0

“Check interface signals and parameters”

6-27

jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

ID: Title

Priority
Scope

MATLAB
Versions

Prerequisites

Description

6-28

jc_0481: Use of hard equality comparisons for floating point numbers
in Stateflow

Recommended
MAAB

All

None
® Do not use hard equality comparisons (Var1 == Var2) with two
floating-point numbers.

¢ [f a hard comparison is required, a margin of error should be defined
and used in the comparison (LIMIT, in the example).

® Hard equality comparisons may be done between two integer data
types.

I Hame | Data Twpe
[1+] ot double
[ij-] dz double
iff={dl -
U [[C-UInT ¢= diff) && (diff ¢= LMIT)]
¥, o
T
Correct

jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

I MHame |Data Type [
] di double
ij-] dz double

[l]

[-LIMIT <= diff) & diff = LIMIT)]

L

W

Incorrect

Rationale e Workflow
e Verification and Validation

® Code Generation

Last V2.0
Changed

Model Not applicable
Advisor

Check

6-29

jc_0491: Reuse of variables within a single Stateflow
cope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope
Priority Recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The same variable should not have multiple meanings (usages) within
a single Stateflow scope.

a=b+c:
I

Correct

Variable of loop counter must not be used other than loop counter.

6-30

jc_0491: Reuse of variables within a single Stateflow
scope

Incorrect

The meaning of the variable i changes from the index of the loop
counter to the sum of a+b

6-31

jc_0491: Reuse of variables within a single Stateflow
cope

'fl opState/ |1

i

')
SubState_A/
—
tempVar = engSpd
engSpd = FiltFunc{templar);

[

[TRANS CALC ENG_CALC
SubState_B/
en
tempVar = tranSpd;
tranSpd = FiltFunc(temp\/ar);

-

%,

| Cortents ofje_0431/ChanopStale/S S e A

Name | Scope | Port | Dt Type Mode [Data Ty
4] temge Locdl Budhiri ni32

Caict e 1 AERETIES

| Mame [Scope | Port | Data Type Mode | Data 1
1] temgvar Local Buikin 3z

Correct

tempVar is defined as local scope in both SubState_A and SubState_B.

Rationale ¢ Readability
o Workflow

® Code Generation

Last V2.0
Changed

6-32

jc_0491: Reuse of variables within a single Stateflow
scope

Model Not applicable

Advisor
Check

6-33

[c_0541: Use of tunable parameters in Stateflow

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

6-34

jc_05641: Use of tunable parameters in Stateflow
Strongly recommended
MAAB

All

None

Tunable parameters should be included in a Chart as inputs from the
Simulink model.

paraml parami T | [Name [Scape
Constant [i4i] paraml Tnput
Chart

Correct
| I Mame [Et:npe |
[14]] paraml Constant

% ar
| I Mame |5cn|:|e |
Chart [143] para ml] Parameter
Incorrect

® Readability
* Workflow

® Code Generation

jc_0541: Use of tunable parameters in Stateflow

Last
Changed

Model
Advisor
Check

V2.0

“Check for use of tunable parameters in Stateflow”

6-35

db 0127: MATLAB commands in Stateflow

6-36

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

Rationale

db_0127: MATLAB commands in Stateflow
Mandatory
MAAB

All

None

The following rules apply to logic in Stateflow:

e MATLAB functions are not used.

* MATLAB instructions are not used.

* MATLAB operators are not used.

® Project-specific MATLAB functions are not used.

®

i
III'.".
XY Trac
du:
xForce = WheelTqTot heelAng);
yForce = WheelTqTot # heelAng);

Incorrect

® Readability
* Workflow

db 0127: MATLAB commands in Stateflow

Last
Changed

Model
Advisor
Check

e Verification and Validation

® Code Generation

V2.0

Not applicable

6-37

jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow
Priorii'y Strongly recommended
Scope MAAB

MATLAB All

Versions

Prerequisites None

Description In a Stateflow diagram, pointers to custom code variables are not
allowed.

Rationale * Readability
e Workflow

e Verification and Validation

® Code Generation

Last V1.0
Changed

Model Not applicable
Advisor

Check

6-38

jm_0011: Pointers in Stateflow

Events

db_0126: Scope of events
jm_0012: Event broadcasts

6-39

db_0126: Scope of events

ID: Title db_0126: Scope of events
Priorii'y Mandatory

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description The following rules apply to events in Stateflow:

e All events of a Chart must be defined on the chart level or lower.

® There is no event on the machine level (i.e. there is no interaction
with local events between different charts).

Specifics
Rationale ¢ Readability

e Workflow

e Verification and Validation

Last V2.0

Changed

Model “Check whether Stateflow events are defined at the chart level or below”
Advisor

Check

6-40

jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts
Priorii'y Strongly recommended
Scope MAAB

MATLAB All

Versions

Prerequisites db_0126: Scope of events

Description The following rules apply to event broadcasts in Stateflow:

® Directed event broadcasts are the only type of event broadcasts
allowed.

¢ The send syntax or qualified event names are used to direct the event
to a particular state.

e Multiple send statements should be used to direct an event to more
than one state.

SA

Example Using Send Syntax

6-41

jm_0012: Event broadcasts

i E1 B2

Example Using Qualified Event Names

Rationale * Readability
e Workflow
e Verification and Validation

® Code Generation

Last V1.0
Changed

Model Not applicable
Advisor

Check

6-42

jm_0012: Event broadcasts

Statechart Patterns

db_0150: State machine patterns
for conditions

db_0151: State machine patterns
for transition actions

6-43

db_0150: State machine patterns for conditions

6-44

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0150: State machine patterns for conditions
Strongly recommended
MAAB

All

None

The following patterns are used for conditions within Stateflow state
machines:

Equivalent State Machine Pattern
Functionality

One condition:

(condition) A | [condition] |Ef’-
_J

db_0150: State machine patterns for conditions

State Machine Pattern

[_.q [condiion? && condiion2] B
[,q [condition? || condition2] B

Equivalent
Functionality

Up to three conditions,
short form:

(The use of different
logical operators in this
form is not allowed. Use
subconditions instead.)

(condition1 &&
condition2)
(conditiont ||
condition2)

Two or more conditions,
multiline form:

Rationale

[condition]
A subcondition is a set of L& condition
logical operations, all of A && condition3] B
the same type, enclosed
in parentheses. »
(The use of different h?;.?g:.? Sr?l _
operators in this form || condition3] =

1s not allowed. Use
subconditions instead.)

(conditiont

&& condition2 ...
&& condition3)
(conditiont

|| condition2 ...
|| condition3)

L]

® Readability
e Workflow

6-45

db_0150: State machine patterns for conditions

e Verification and Validation

Last V2.0
Changed

Model Not applicable
Advisor

Check

6-46

db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions
Priorii'y Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description

Equivalent Functionality

State Machine Pattern

One transition action:

action;

A jaction:

Two or more transition
actions, multiline form:

(Two or more transition
actions in one line are not
allowed.)

actiont;
action2;
action3;

faction?:
action?;

B action3;

For more information about Stateflow actions, see “Using Actions in
Stateflow Charts” in the Stateflow documentation.

6-47

db_0151: State machine patterns for transition actions

Rationale ¢ Readability
o Workflow

e Verification and Validation

Last V1.0
Changed

Model Not applicable
Advisor

Check

6-48

db_0151: State machine patterns for transition actions

Flowchart Patterns

db_0134: Flowchart patterns for
If constructs

db_0135: Flowchart patterns for
loop constructs

db_0148: Flowchart patterns for
conditions

db_0149: Flowchart patterns for
condition actions

db_0159: Flowchart patterns for
case constructs

The preceding guidelines illustrate sample patterns used in flow charts.
As such, they would normally be part of a much larger Stateflow
diagram.

6-49

db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions
Prioriry Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites None

Description Use the following patterns for conditions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

One condition:

[condition] [condition]

 comment ™/
[condition]

O

Up to three conditions, short
form:

(Th et Tarerard] [condition1 && condition2 && conditiond]
e use o 1Irerent logica
O =)

operators in this form is not
allowed. Use subconditions
instead.)

[conditiont [condition1 || condition2 || condition3]

&& condition2 D{ }
&& condition3] <:}
[condition1

| | condition2
|| condition3]

6-50

db_0148: Flowchart patterns for conditions

Equivalent Functionality

Flowchart Pattern

Two or more conditions,
multiline form:

(The use of different logical
operators in this form is not
allowed. Use subconditions
instead.)

[conditioni

&&% condition2 ...
&& condition3]
[conditioni

|| condition2 ...
|| condition3]

[conditionT ..
&& condition2 .
&% condition3]

[condition? ..
| conditionz .
|| condition3]

Conditions with subconditions:

(The use of different
logical operators to connect
subconditions is not allowed.
The use of brackets is
mandatory.)

[(conditionta

|| conditionib)
&& (condition2a
|| condition2b)
&& (condition3)]
[(conditionta
&& conditionib)
|| (condition2a
&& condition2b)
|| (condition3)]

[[conditionta || condition1h) ..
&& (conditionZa || conditionZb) .
&8 condition3]

=

[[conditionla && condition1b) ..
|| {conditionZa && conditionZb)

|| condition3]
=)

6-51

db_0148: Flowchart patterns for conditions

Equivalent Functionality Flowchart Pattern

Conditions that are visually

d:
separate [condition1] [conditionZ]

(This form may be combined

with the preceding patterns.)

[condition1
&& condition2]
[condition1
dition2 »
|| conditionz] [condition1]
[condition?]
Rationale e Readability
e Workflow
e Verification and Validation
Last V2.0
Changed
Model Not applicable
Advisor
Check

6-52

db_0149: Flowchart patterns for condition actions

ID: Title

db_0149: Flowchart patterns for condition actions

Priority Strongly recommended
Scope MAAB
MATLAB All
Versions
Prerequisites None
Description Use the following patterns for condition actions within Stateflow
Flowcharts:
Equivalent Functionality Flowchart Pattern

One condition action:

action;

{ ™ comment *f
action; { .
1 action:

¥

6-53

db_0149: Flowchart patterns for condition actions

Equivalent Functionality

Flowchart Pattern

Two or more condition actions, multiline
form:

(Two or more condition actions in one line
are not allowed.)

actiont;
action2;
action3;

{

actiont:
action2:
action3;
t

Condition actions, that are visually
separated:

(This form may be combined with the

O

preceding patterns.) action1a;
action1b;
actionia; 1
actionib;
action2;
action3; {
action2:
}
{
action3;
g 1
Rationale e Readability

e Workflow

e Verification and Validation

db_0149: Flowchart patterns for condition actions

Last V1.0
Changed

Model Not applicable
Advisor

Check

6-55

db_0134: Flowchart patterns for If constructs

ID: Title db_0134: Flowchart patterns for If constructs
Priority Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description Use the following patterns for If constructs within Stateflow Flowcharts:
Equivalent Functionality Flowchart Pattern
if then

if (condition)
{
action;

}

[condition)

{

action;

}

6-56

db 0134:

Flowchart patterns for If constructs

Equivalent Functionality

Flowchart Pattern

if then else

if (condition)

{

actiont;

}

else

{

action2;

}

[condition)

L
action2;

}

action;

&

if then else if

if (conditiont)

{

actiont;

}

else if (condition2)

{

action2;

}

else if (condition3)

{

action3;

}

else

{

action4;

}

[comdition 1] :"O

[condimionZ]

B {
[condition 3] ict'mni: action;
} H

6-57

db_0134: Flowchart patterns for If constructs

Equivalent Functionality

Flowchart Pattern

Cascade of if then

if (conditiont)
{

actiont;

if (condition2)
{

action2;

if (condition3)
{

action3;

}

}

}

=)

[conditon]

-
(=)

{
actionl,
1}

,'5:__ [conditionZ] -
Y

) r={ }

K
o

I
L
achon2,

}
;ﬁlx'?mnm

actiond;

C.‘.fh’f;

Rationale e Readability
e Workflow

e Verification and Validation

Last V1.0
Changed

Model Not applicable

Advisor
Check

6-58

db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs
Priority Strongly recommended

Scope MAAB

MATLAB All

Versions

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

6-59

db_0159: Flowchart patterns for case constructs

6-60

Description

Stateflow Flowcharts:

Use the following patterns must be used for case constructs within

Equivalent Functionality

Flowchart Pattern

case with exclusive selection

selection = ...;
switch (selection)
{
case 1:
actiont;
break;
case 2:
action2;
break;
case 3:
action3;
break;
default:
action4;

}

i
salachion=
}
V [selection == 1]
ILJ"—"'--“-({
actioni;
V1
¥ ! =0
S8l == 7]
{h}[.eetu-}n ﬁlt__‘(_ |
Ijéﬂmnl
: - C >()
(1 [salection == 3 '{:}
e
] {
achon3;
} T
i () — *'1
actiond, g
'
U :
(= I:_,
{
P

db_0159: Flowchart patterns for case constructs

Equivalent Functionality Flowchart Pattern

case with exclusive conditions

c1 = conditioni; —

c2 = condition2; ¢1 = condition1,
c3 = condition3; EE_E:EE::;
if (c1 && !c2 && !c3) }

{ ¥ [e1&&1c288 163

actiont; LA =0 i
} action1;
9'\ }

elseif (!c1 && c2 && !c3) ' .
{ ' — ¢

|I = '_r
[[le1 28 2 28 ci'.] _
action2; '®)
} au:t-_.n__
elseif (!lc1 && !c2 && c3) ({
{ ¥ [c1881c288 ¢3] ¢
action3; .
{
} actiond; i
else _ Y1 [
{ ,)
{ acthord,
action4; j

: 3

L)

Rationale ¢ Readability
o Workflow

e Verification and Validation

Last V1.0
Changed

6-61

db_0159: Flowchart patterns for case constructs

Model Not applicable

Advisor
Check

6-62

db_0135: Flowchart patterns for loop constructs

ID: Title
Priority
Scope

MATLAB
Versions

Prerequisites

Description

db_0135: Flowchart patterns for loop constructs
Recommended
MAAB

All

db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Use the following patterns to create Loops within Stateflow Flowcharts:

Equivalent Functionality | Flowchart Pattern

for loop

for (index=0; L [index < number_of_loops) &.'-f__H
index<number_of_loops; e = 0 =
index++) !

action; o=l action;

} T ™ ..____..-.-.-

e

6-63

db_0135: Flowchart patterns for loop constructs

6-64

Equivalent Functionality

Flowchart Pattern

while loop

while (condition)
{
action;

}

O

[condition]

s

do while loop

do

{
action;
}

while (condition);

SR
p

pd
yd

.

[candna:;\\\

action

db_0135: Flowchart patterns for loop constructs

Rationale

Last
Changed

Model
Advisor
Check

® Readability
e Workflow

e Verification and Validation

V1.0

Not applicable

6-65

db_0135: Flowchart patterns for loop constructs

6-66

Recommendations for
Automation Tools

These recommendations are for companies who develop tools that automate
checking of the style guidelines. The MathWorks Automotive Advisory Board
(MAAB) developed these recommendations for tool vendors who create tools
developed with MathWorks tools that check models against these guidelines.
To provide maximum information to potential users of the tools, the MAAB
strongly recommends that tool vendors provide a compliance matrix that

is easily accessible while the tool is running. This information should be
available without a need to purchase the tool.

The compliance matrix should include the following information:
® Version of the guidelines that are checked — shall include the complete
title, as found on the title page of this document.
Include the MAAB Style Guidelines Title and Version document number.
e Table consisting of the following information for each guideline:
= Guideline ID
= Guideline title
= Level of compliance
= Detail

The guideline ID and title shall be exactly as included in this document. The
level of compliance shall be one of the following:

A Recommendations for Automation Tools

Correction The tool checks and automatically or semiautomatically
corrects the noncompliance.

Check The tool checks and flags noncompliance. It is the developer’s
responsibility to make the correction.

Partial The tool checks part of the guideline. The detail section
should clearly identify what is and what is not checked.

None The tool does not check the guideline. The MAAB

recommends that the vendor provide a recommendation of
how to manually check guidelines that the tool does not
check.

Guideline Writing

Guidelines with the following characteristics are easier to understand and
use. At a minimum, when writing a new guideline, the guideline should be

Understandable and
unambiguous

A guideline’s description should be precise,
clearly worded, concise, and should define a
characteristic of a model (or part of a model) that
the checking tool can evaluate. Use the words
"must," "shall," "should," and "may" carefully;
they have distinct meanings that are important
for model developers and model checkers (human
and automated). It is helpful to the reader if the
guideline author describes how the conforming
state can be reached (for example, by selecting
particular options or clicking a certain button).
Examples, counterexamples, pictures, diagrams,
and screen shots are also helpful and are
encouraged.

Easy to find

Minimize the allowable exceptions to a guideline;
exceptions blur a guideline and make it harder
to apply. If a guideline has many allowable
exceptions, you may be trying to cover too many
characteristics with one guideline. (See Minimal,
following, for some solutions.)

Minimal

A guideline should have a clear, stable title
and be properly located among all the other
guidelines. The title should describe the topic
covered but not the specific evaluation criteria.
This makes the title less likely to change over
time and, therefore, easier to find. Specific
evaluation criteria should be included in the

B Guideline Writing

B-2

guideline description. For example, if a guideline
addresses the characters allowed in names,

the guideline title should be something like
"Allowed characters in names," and the guideline
description should indicate specifically what
characters are or are not to be used. If a
guideline has prerequisites, they should appear
before the dependent guideline. (This may not
always be possible if the prerequisite is in a
different section.)

A guideline should address only one model
characteristic at a time. Guidelines should

be atomic. For example, instead of writing a
big guideline that addresses error prevention
and readability at the same time, make

two guidelines, one that addresses error
prevention and one that addresses readability. If
appropriate, make one guideline a prerequisite
of the other. Also, big guidelines are more likely
than small guidelines to require compromises
for wide acceptance. Big guidelines may end up
being weaker, less specific, and less beneficial.
Small, focused guidelines are less likely to
change due to compromise and easier adoption.

Flowchart Reference

Use the patterns that appear in this appendix for if-then-else-if constructs
within Stateflow Flowcharts.

C Flowchart Reference

Straight Line Flow Chart Pattern

Curved Line Flow Chart Pattern

if then
O
é& [condition]
W,
{ [condition]
action; I
¥ action:
O= }
if then else
O @
é& [condition]
o [condition]
. _ 1
actionz; actionT; action1:
5 o
AN
g) &

C-2

Flowchart Reference

Straight Line Flow Chart Pattern

Curved Line Flow Chart Pattern

if then else if

[eondition]

[condition]

[condition1]

achon;

}

[conditionZ]

4

) i
acton2,
&wndin ond] |}
achond,
}
‘ -
=0

Cascade of if then
{
acthioni;

)
[oonditioni])
(}—U-O
H

i
a\ [Eanktioe) ~

action?

§

¥ [conditond]

[i[
actond
1

oF Oa O O
r

[condition1]
{

action;

}
[conditionZ2]
i

action2;

}
[condition3]
1

action?;

|}

€ Flowchart Reference

The following patterns are used for case constructs within Stateflow
Flowcharts:

case with exclusive selection

{
selection=
}

[selection == 1)

[sedection == J]

[sedaction == 3]

{ {
actiond, | acbiond, | actionl;
¥

Flowchart Reference

case with exclusive conditions

¢1 = condition?;
€2 = condiion2;
3 = conclition3,;
t

[c1 & e B 1c3)
&)
et &8 c2 &8 c3]
[t && Ic2 &2 c3)
{ { i
actiond; | action2; ;’-‘EIJGM.
} }

€ Flowchart Reference

C-6

The following patterns are used for for loops within Stateflow Flowcharts:

Straight Line Flow Chart Pattern

Curved Line Flow Chart Pattern

for loop

Q
{

[Index < numiber_of_loops)

index++;

}

achom,

}

{

Index =0;

}

[index < number_of_loops]

{

action;
Index++

}

Flowchart Reference

Straight Line Flow Chart Pattern | Curved Line Flow Chart Pattern

while loop

)

(v]
T v N

Straight Line Flow Chart Pattern | Curved Line Flow Chart Pattern

do while loop

{

action;

}

[condition]

C-7

€ Flowchart Reference

The following patterns are alternately used for If-then-else-if constructs

within Stateflow Flowcharts:

Straight Line Flow Chart Pattern

Alternate Straight Line Flow Chart Pattern

if then else if

[condition1]

[condition]

i
[eendition3) Setonz; | actiont;
} i

[conditioni] B
o
|eondition2]
-
[eand®ond)
{ { { I
actionsd; achiond; | action2; wchond;

&} oy H H

=

Flowchart Reference

Cascade of if then

{
actiond;
}
[condtion)
{
action? |
| .
[ecnditiond] &
{ {)—::#E 1
actond, | {)
} action3;
& & y!
I

C Flowchart Reference

C-10

Background Information on
Basic Blocks and Signals

e “Basic Blocks” on page D-2
e “Signals and Signal Labels” on page D-3

D Background Information on Basic Blocks and Signals

Basic Blocks

This document uses the term basic blocks to refer to blocks built into the

Simulink block libraries. The following table lists some examples of basic
blocks.

Basic Blocks

Block Example

Inport C>»

Constant 1 b

Gain >|>>

Sum @
Dy

2
Switch ; >
Saturation
Abs A vl p

D-2

Signals and Signal Labels

Signals and Signal Labels

Signals may be scalars, vectors, or busses. They may carry data or control
flows.

You use signal labels to make model functionality more understandable from
the Simulink diagram. You can also use them to control the variable names
used in simulation and code generation. Enter signal labels only once (at

the point of signal origination). Often, you may want to also display the
signal name elsewhere in the model. In these cases, the signal name should
be inherited until the signal is functionally transformed. (Passing a signal
through an integrator is functionally transforming. Passing a signal through
an Inport into a nested subsystem is not.) Once a named signal is functionally
transformed, associate a new name with it.

Unless explicitly stated otherwise, the guidelines in “Signals” on page 5-27
apply to all types of signals.

For more information about the representation of signals in Simulink models,
see “Working with Signals” in the Simulink documentation.

D-3

D Background Information on Basic Blocks and Signals

Glossary

Actions
Actions are part of Stateflow diagram execution. The action can be
executed as part of a transition from one state to another, or depending
on the activity status of a state. Transitions can have condition actions
and transition actions. For example,

Condition Transition
action action

=

’r'-:-we'_on | switch_off [c1]{ elec_off}/ light_off;

,

| Power_off ‘

[—

States can have entry, during, exit, and, on event_name actions. For
example,

Fower_ond

enlrractiont {;

during: acion2({);
exitaction3d;

on switch_offactiond(;

&

If you enter the name and backslash followed directly by an action or
actions (without the entry keyword), the actions are interpreted as entry
actions. This shorthand is useful if you are specifying only entry actions.

The action language defines the categories of actions you can specify
and their associated notations. An action can be a function call, an
event to be broadcast, a variable to be assigned a value, and so on.

Glossary-1

MAAB Glossary

Action Language
Sometimes you want actions to take place as part of Stateflow diagram
execution. The action can be executed as part of a transition from one
state to another, or it can depend on the activity status of a state.
Transitions can have condition actions and transition actions. States
can have entry, during, exit, and, on event_name actions. An action
can be a function call, an event to be broadcast, a variable to be assigned
a value, etc.

The action language defines the categories of actions you can specify and
their associated notations. Violations of the action language notation
are flagged as errors by the parser. This section describes the action
language notation rules.

Chart Instance
A chart instance is a link from a Stateflow model to a chart stored
in a Simulink library. A chart in a library can have many chart
instances. Updating the chart in the library automatically updates all
the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occur,
given that the specified expression is true. For example,

s

neudral e —~—
clutch engaged

-
[engaged

———. [speed » threshold) [speed=threshold] is a

[se:i] ~ ' condition
.

The action language defines the notation to define conditions associated
with transitions.

.

Connective Junction
Connective junctions are decision points in the system. A connective
junction is a graphical object that simplifies Stateflow diagram

Glossary-2

MAAB Glossary

representations and facilitates generation of efficient code. Connective
junctions provide alternative ways to represent the system behavior you
want. This example shows how connective junctions (displayed as small
circles) are used to represent the flow of an if code structure.

o if [c1]4
{__I [c1){al) a1
- if [e2]{
e a2
}else if [e3]4
/ 4 a3
|) }
[[c2]{a2} }
|
\ /
7 [c3){a3)
.-.___{- i B . '|"
Or the equivalent squared style
. it el]y
0 al
{al} 11 [e2]df
") ["a?l ~ a2)
L") Felse if |ed3)q
1[&23 ald
& .
& o
{23}
9]

Glossary-3

MAAB Glossary

Glossary-4

Name Button Icon | Description
Connective i One use of a Connective junction is to
junction handle situations where transitions

out of one state into two or more states
are taken based on the same event but
guarded by different conditions.

Data

Data objects store numerical values for reference in the Stateflow
diagram.

Defining Data
A state machine can store and retrieve data that resides internally in
its own workspace. It can also access data that resides externally in the
Simulink model or application that embeds the state machine. When
creating a Stateflow model, you must define any internal or external
data referenced by the state machine’s actions.

Data Dictionary
The data dictionary is a database where Stateflow diagram information
is stored. When you create Stateflow diagram objects, the information
about those objects is stored in the data dictionary, once you save the
Stateflow diagram.

Decomposition
A state has decomposition when it consists of one or more substates.
A Stateflow diagram that contains at least one state also has
decomposition. Representing hierarchy necessitates some rules around
how states can be grouped in the hierarchy. A superstate has either
parallel (AND) or exclusive (OR) decomposition. All substates at a
particular level in the hierarchy must be of the same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state
decomposition is indicated when states have dashed borders. This
representation is appropriate if all states at that same level in the
hierarchy are active at the same time. The activity within parallel
states is essentially independent.

MAAB Glossary

Exclusive (OR) State Decomposition. Exclusive (OR) state
decomposition is represented by states with solid borders. Exclusive
(OR) decomposition is used to describe system modes that are mutually
exclusive. Only one state, at the same level in the hierarchy, can be
active at a time.

Default Transition
Default transitions are primarily used to specify which exclusive (OR)
state is to be entered when there i1s ambiguity among two or more
neighboring exclusive (OR) states. For example, default transitions
specify which substate of a superstate with exclusive (OR) decomposition
the system enters by default in the absence of any other information.
Default transitions are also used to specify that a junction should be
entered by default. A default transition is represented by selecting the
default transition object from the toolbar and then dropping it to attach
to a destination object. The default transition object is a transition with
a destination but no source object.

Name Button Icon | Description
Default o(}__) Use a Default transition to indicate,
transition when entering this level in the

hierarchy, which state becomes active
by default.

Events
Events drive the Stateflow diagram execution. Define all events that
affect the Stateflow diagram. The occurrence of an event causes the
status of the states in the Stateflow diagram to be evaluated. The
broadcast of an event can trigger a transition to occur and/or can trigger
an action to be executed. Events are broadcast in a top-down manner
starting from the event’s parent in the hierarchy.

Finite State Machine
A finite state machine (FSM) is a representation of an event-driven
system. FSMs are also used to describe reactive systems. In an
event-driven or reactive system, the system transitions from one mode
or state, to another prescribed mode or state, provided that the condition
defining the change is true.

Glossary-5

MAAB Glossary

Flow Graph
A flow graph is the set of Flowcharts that start from a transition segment
that, in turn, starts from a state or a default transition segment.

Flowchart (also known as Flow Path)
A Flowchart is an ordered sequence of transition segments and junctions
where each succeeding segment starts on the junction that terminated
the previous segment.

Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same
transition segment.

Hierarchy
Using hierarchy you can organize complex systems by placing states
within other higher-level states. A hierarchical design usually reduces
the number of transitions and produces neat, more manageable
diagrams.

History Junction
A History Junction specifies the destination substate of a transition
based on historical information. If a superstate has a History Junction,
the transition to the destination substate is defined to be the substate
that was most recently visited. The History Junction applies to the level
of the hierarchy in which it appears.

Name Button Icon | Description
History {H} Use a History Junction to indicate, when
Junction entering this level in the hierarchy, that

the last state that was active becomes
the next state to be active.

Inner Transitions
An inner transition is a transition that does not exit the source state.
Inner transitions are most powerful when defined for superstates with
XOR decomposition. Use of inner transitions can greatly simplify a
Stateflow diagram.

Glossary-6

MAAB Glossary

Library Link
A library link is a link to a chart that is stored in a library model in
a Simulink block library.

Library Model
A Stateflow library model is a Stateflow model that is stored in a
Simulink library. You can include charts from a library in your model
by copying them. When you copy a chart from a library into your model,
Stateflow does not physically include the chart in your model. Instead,
it creates a link to the library chart. You can create multiple links to a
single chart. Each link is called a chart instance. When you include a
chart from a library in your model, you also include its state machine.
A Stateflow model that includes links to library charts has multiple
state machines. When Stateflow simulates a model that includes charts
from a library model, it includes all charts from the library model even
if there are links to only some of its models. However, when Stateflow
generates a stand-alone or Real-Time Workshop® target, it includes only
those charts for which there are links. A model that includes links to a
library model can be simulated only if all charts in the library model are
free of parse and compile errors.

Machine
A machine is the collection of all Stateflow blocks defined by a Simulink
model exclusive of chart instances (library links). If a model includes
any library links, it also includes the state machines defined by the
models from which the links originate.

Nonvirtual Block
Blocks that perform a calculation, such as a Gain block.

Notation
A notation defines a set of objects and the rules that govern the
relationships between those objects. Stateflow notation provides a
common language to communicate the design information conveyed by a
Stateflow diagram. Stateflow notation consists of:
® A set of graphical objects

® A set of nongraphical text-based objects

¢ Defined relationships between those objects

Glossary-7

MAAB Glossary

Glossary-8

Parallelism
A system with parallelism can have two or more states that can be
active at the same time. The activity of parallel states is independent.
Parallelism is represented with a parallel (AND) state decomposition.

Real-Time System
A system that uses actual hardware to implement algorithms, for
example, digital signal processing or control applications.

Real-Time Workshop
Real-Time Workshop software includes an automatic C language code
generator for Simulink. It produces C code directly from Simulink block
diagram models and automatically builds programs that can be run in
real-time in a variety of environments.

Real-Time Workshop Target
An executable built from code generated by the Real-Time Workshop
product.

S-Function
A customized Simulink block written in C or M-code. S-functions
written in C can be inlined in the Real-Time Workshop software.
When using Simulink together with Stateflow for simulation, Stateflow
generates an S-function (MEX-file) for each Stateflow machine to
support model simulation. This generated code is a simulation target
and is called the S-Fun target within Stateflow.

Signal propagation
Process used by Simulink to determine attributes of signals and blocks,
such as data types, labels, sample time, dimensionality, and so on, that
are determined by connectivity.

Signal source
The signal source is the block of origin for a signal. The signal source
may or may not be the true source.

Simulink
Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled
in continuous time, sampled time, or a hybrid of the two. Systems can

MAAB Glossary

also be multirate, that is, have different parts that are sampled or
updated at different rates.

Simulink allows you to represent systems as block diagrams that you
build using your mouse to connect blocks and your keyboard to edit
block parameters. Stateflow is part of this environment. The Stateflow
block is a masked Simulink model. Stateflow builds an S-function that
corresponds to each Stateflow machine. This S-function is the agent
Simulink interacts with for simulation and analysis.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating
Stateflow diagrams into Simulink models, you can add event-driven
behavior to Simulink simulations. You create models that represent
both data and control flow by combining Stateflow blocks with the
standard Simulink blockset. These combined models are simulated
using Simulink.

State
A state describes a mode of a reactive system. A reactive system has
many possible states. States in a Stateflow diagram represent these
modes. The activity or inactivity of the states dynamically changes
based on events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a
single state, that state’s parent is the Stateflow diagram itself. A state
also has history that applies to its level of hierarchy in the Stateflow
diagram. States can have actions that are executed in a sequence based
upon action type. The action types are: entry, during, exit, or on
event_name actions.

Name Button Icon | Description
State Use a state to depict a mode of the
system.

Stateflow Block
The Stateflow block is a masked Simulink model and is equivalent to an
empty, untitled Stateflow diagram. Use the Stateflow block to include a
Stateflow diagram in a Simulink model.

Glossary-9

MAAB Glossary

Glossary-10

The control behavior that Stateflow models complements the
algorithmic behavior modeled in Simulink block diagrams. By
incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create
models that represent both data and control flow by combining Stateflow
blocks with the standard Simulink and toolbox block libraries. These
combined models are simulated using Simulink.

Stateflow Debugger
Use the Stateflow Debugger to debug and animate your Stateflow
diagrams. Each state in the Stateflow diagram simulation is evaluated
for overall code coverage. This coverage analysis is done automatically
when the target is compiled and built with the debug options. The
Debugger can also be used to perform dynamic checking. The Debugger
operates on the Stateflow machine.

Stateflow Diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is
also a graphical representation of a finite state machine where states
and transitions form the basic building blocks of the system.

Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event,
and target objects.

Stateflow Finder
Use the Finder to display a list of objects based on search criteria that
you specify. You can directly access the properties dialog box of any
object in the search output display by clicking on that object.

Substate
A state 1s a substate if it 1s contained by a superstate.

MAAB Glossary

Superstate
[Sun state
Substate J
Superstate

A state is a superstate if it contains other states, called substates.

[Sun state

Superstate

Subsiate J

Target
An executable program built from code generated by Stateflow or
Real-Time Workshop software.

Top-down Processing
Top-down processing refers to the way in which Stateflow processes
states. In particular, Stateflow processes superstates before states.
Stateflow processes a state only if its superstate is activated first.

Transition
A transition describes the circumstances under which the system moves
from one state to another. Either end of a transition can be attached to
a source and a destination object. The source is where the transition
begins and the destination is where the transition ends. It is often the
occurrence of some event that causes a transition to take place.

Transition Path
A transition path is a Flowchart that starts and ends on a state.

Glossary-11

MAAB Glossary

Transition Segment

A transition segment is a single directed edge on a Stateflow diagram.
Transition segments are sometimes loosely referred to as transitions.

Tunable parameters

A tunable parameter is a parameter that can be adjusted in the model
and in generated code.

True Source

The true source 1s the block which creates a signal. The true source is
different from the signal source because the signal source may be a
simple routing block such as a Demux block.

Virtual Block

When creating models, be aware that Simulink blocks fall into two
basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play
an active role in the simulation of a system. If you add or remove a
nonvirtual block, you change the model’s behavior. Virtual blocks, by
contrast, play no active role in the simulation. They help to organize

a model graphically. Some Simulink blocks can be virtual in some
circumstances and nonvirtual in others. Such blocks are called
conditionally virtual blocks. The following table lists Simulinks virtual
and conditionally virtual blocks.

Block Name

Condition Under Which Block Is Virtual

Bus Selector

Virtual if input bus 1s virtual

Demux

Always virtual

Enable

Virtual unless connected directly to an Outport block

From

Always virtual

Goto

Always virtual

Goto Tag
Visibility

Always virtual

Ground

Always virtual

Inport

Virtual when the block resides within any subsystem
block (conditional or not), and does not reside in the
root (top-level) Simulink window.

Glossary-12

MAAB Glossary

Block Name

Condition Under Which Block Is Virtual

Mux Always virtual

Outport Virtual when the block resides within any subsystem
block (conditional or not), and does not reside in the
root (top-level) Simulink window.

Selector Virtual except in matrix mode

Signal Always virtual

Specification

Subsystem Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option is
selected.

Terminator Always virtual

Trigger Virtual if the Outport port is not present.

Virtual Scrollbar

Using a virtual scrollbar, you can set a value by scrolling through a list
of choices. When you move the mouse over a menu item with a virtual
scrollbar, the cursor changes to a line with a double arrowhead. Virtual
scrollbars are either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either horizontally
or vertically to change the value.

Glossary-13

	toc
	Introduction
	Presentation of Guidelines Hosted by The MathWorks
	Motivation
	Guideline Template
	Guideline ID
	Guideline Title
	Priority
	Scope
	MATLAB Versions
	Prerequisites
	Description
	Rationale
	Last Change
	Model Advisor Check

	Document Usage

	Naming Conventions
	General Guidelines
	Model Content

	Model Architecture
	Simulink and Stateflow Partitioning
	Subsystem Hierarchies
	J-MAAB Model Architecture Decomposition

	Model Configuration Options
	Model Configuration Options

	Simulink
	Diagram Appearance
	Signals
	Block Usage
	Block Parameters
	Simulink Patterns

	Stateflow
	Chart Appearance
	Stateflow Data and Operations
	Events
	Statechart Patterns
	Flowchart Patterns

	Recommendations for Automation Tools
	Guideline Writing
	Flowchart Reference
	Background Information on Basic Blocks and Signals
	Basic Blocks
	Signals and Signal Labels

	MAAB Glossary

	tables
	Blocks that You Can Place at any Model Level
	Basic Blocks

